Loading...
Specifications Aigrzo.zi_ oz RECEIVED JUL 03 2021 CITY OF TIGARD z BUILDING DIVISION Vr South Valley Engineering 4742 Liberty Rd. S #151 • Salem, OR. 97302 Ph. (503) 302-7020 • Fax (888) 535-6341 www.southvalleyengineering.com Project No. 12105030 Calculations for Rick Dodds 14875 SW 79th Ave. I, Tigard, OR. 97224 Date 6/18/2021 Enaineer I) • ' •OP /.,y* 4477r# OREGON 4-- <;a,,, 4)- 9, 46)/ R. v•it.9-` RENEWS: 6/30121 POST FRAME BUILDING SUMMARY SHEET Owner: Rick Dodds Dame: 6/18i2021 Building location: 14875SVV7VthAve. Tigard,OR.97224 Project No : 12105030 Building Description: Private shop Building Codes: 2019OSSC.ASCE7'16 Building dimensions: Environmental information: Width: 40 ft. Wind speed: 100 MPH Length: 13 h. Wind exposure: B Height: 13 ft� Seismic design category: D Eavnovorhong: 15 tt. S,: 0.84 Gable overhang: 1.5 M. u,: [\39 Roof pitch: 2 x2 Ground snow load: 25 nsL Bay spacing: 13 ft, Design Snow Load: 25 pyL Post tributary width: 13 ft. Roof dead load: 5 psLVncl,ceiling load 8any) Concrete Slab: Yes Soil bearing capacity: 1,530 pst. Risk Category: U Per Table 1�-1 x3CE7-10 pos,m pnmhu|oinhu,matiyn: Corner posts: Gable wall posts: Size: O,G Size 6x8 Grade: #2Hf Grade: w2H-F Typo: RS` Type: RS` Pnothole diameter: 24 in Pnothuledianemr: 24 in Pontholedepth`': 4�00 M, PontholeUopm'': 4.00 ft. 0uhw�hco^c�to Varies-seePoo Cnn�c�n1�au�0� Pu�Conm����uc�0� Uaomm calculations 'Rough Sawn *Rough Sawn "To bottom offooting '`Tobnnornoffooting Pumn & girt information: Pu,Unm Girls 3uo: 2x8 Size: 2x0 Grade: w2D-F Grade #2D-F Spacing: 16 in.n.r. Spacing: 24 in.oz. Orientation: Commercial Sheathing information: Roof: Metal over OSB wood sheathing mmxu: Left gable wall is29ga.metal only Right gable wall is28ga.metal only Front ouvo wall is metal over wood sheathing Rear ouvo wall iuznga.metal only Page/ w,o Snow Load Calculations Snow load calculations per ASCE 7-16 Chapter 7 P.: 25 psf-Ground Snow Load Ce: 1.0 Exposure Factor from ASCE Table 7-2 1.2 Thermal Factor from ASCE Table 7-3 I,,: 1.0 Importance Factor from ASCE Table 1.5-2 Flat Roof Snow Load.p;=0.7 x p9 CA x C x I5 p,: 21.0 psf- Flat Roof Snow Load Cs: 1.00 Figure 7.4-1 based on C,,roof slope and surface p5: 21.0 psf-Sloped roof snow load Pdeslgn: 25 psf-Design Snow Load Page 2ot10 - - Wind Pressure Calculations Wind calculations per ASCE 7-16 Chapters 26.28 and 30 Roof Pitch: 2 /12 Design Wind Speed,V: 100 MPH Eave Height: 13 ft. Wind Exposure: B Risk Category: Velocity pressures qh per equation 26.10-1 clh=0.00256xKhxKzrxKdxKexV2 at mean roof height h Angle: 9.46 ° Kh: 0.70 Velocity pressure coefficient at roof ht.h from Table 26.10-1 1.00 Topographic effect-assume no ridges or escarpments Kd: 0.85 Wind Directionality Factor.Table 26.6-1 Ke: 1.00 Ground Elevation Factor,Table 26.9-1 Velocity Pressures:qh= 15.23 psf Determine Velocity Pressure Coefficients&Wind Pressures per ASCE 7-16 Figure 28.3-1 for MWFRS MWFRS 1. Windward Eave Wall Pressure 2. Leeward Eave Wall: 0.44 GCpr„7: -0.33 6.68 psf qbe: -5.05 psf 3. Windward Eave Roof Pressure 4. Leeward Eave Roof: -0.69 GC0,. -0.40 qwr: -10.51 psf qui: -6,13 psf 5. Windward Gable Wall: 6. Leeward Gable Wall: 0.40 Cpiwg: -0.29 6.09 psf cliw: -4.42 psf Components&Cladding GC,,: 0.18 Internal pressure per Table 26.13-1 7. Roof elements -0.82 ger: 15.19 psf Roof elements per Figure 30.3-2A thru I 8. Wall elements: GCpw: -0.95 ger: 17.15 psf lWall elements per Figure 30.3-1 Page 3 of 10 Seismic Design Parameters Calculate seismic building loads from ASCE 7-16 Chapters 11 & 12 Seismic Parameters Ss= 0.84 S1= 0.39 1.16 F.= 1.91 per Tables 11.4-1 & 11.4-2 $M;= 0.98 SM= 0.75 Calculated per Section 11.4.3 Sos= 0.65 Sol= 0.50 Calculated per Section 11.4.4 Seismic Design Category= D From Section 11.6 Importance factor: 1.00 F= 1.0 for 1 story building Response Mod.Factor R: Roof: 7 From Table 12.14-1,Section B-22 Left gable wall: 2.5 From Table 12.14-1.Section B-24 Right gable wall: 2.5 From Table 12.14-1.Section B-24 Front eave wall: 7 From Table 12.14-1,Section B-22 Rear eave wall: 2.5 From Table 12.14-1,Section B-24 Calculate building weights.W.for seismic forces Building width= 40 ft. Building length= 13 ft. Building height= 13 ft. Roof area= 688 sf Gable wall area= 327 sf Eave wall area= 84.5 sf Root+ceiling DL= 5 psf Snow LL(if appliable)= 0 psf Roof W= 3,440 lbs Loft(y/n): n Loft dead load: N/A pst Full or partial loft: N/A Wall Areas Building dead loads Loft dead loads Left gable wall: 327 SF Left gable wall: 3 psf Left gable wall: 0 lbs Right gable wall: 327 SF Right gable wall: 3 psf Right gable wall: 0 lbs Front eave wall: 85 SF Front eave wall: 5 psf Front eave wall: 0 lbs Rear eave wall: 85 SF Rear eave wall: 3 psf Rear eave wall: 0 lbs Calculate Seismic Base Shear, V per Section 12,14.8 V=[(FxSos)/R]XW (Egn. 12.14-12) Total dead loads,W find roof.loft) Roof: 3,440 lbs Vrool= 321 lbs base shear for roof diaphragm Left gable wall: 980 lbs VLGW= 538 lbs base shear for wall diaphragm Right gable wall: 980 lbs VRGw= 538 lbs base shear for wall diaphragm Front eave wall: 423 lbs VFEw= 252 lbs base shear for wall diaphragm Rear eave wall: 254 lbs VREw= 706 lbs base shear for wall diaphragm Page 4 of 10 Post Embedment Calculation Determine the minimum posthole diameter and embedment depth for the corner posts per ASAE EP486.1 Since there is a slab,the post will be considered constrained at the top. The backfill will be concrete full depth. Design Criteria: Sy= 1500 psi-vertical soil bearing capacity S. 150 psf•lateral soil bearing capacity M„o,= 1.591 ft-lbs- Moment at top of one posthole V,= 245 lbs-Lateral load on post at top of posthole Posthole dia.= 2 ft. b= 2.00 ft-maximum width of post in soil(=posthole diameter if concrete backfill) A;,,= 3.14 ft`-area of footing d= - ft-depth of footing to be determined below Per Sections 4.2.2.1 and 4.2.2.2,allowable lateral soil bearing capacities may be increased by 2 for isolated posts(spaced at least 3 ft. apart).and by 1.33 for wind loading SLAT= 294 psf-factored lateral soil bearing capacity Minimum embedment depth required for lateral load.constrained at the top,concrete backfill,per Section 6.5 concrete backfill,per Section 6.5 d,,,;r,_ [(4 x Mpost)/(SLAT x b)[^113 dmi„ L= 2.21 ft.-minimum depth requried for lateral load Allowable vertical soil bearing pressure for gravity loads S,, Sr x Anq x(1+(0.2 x(d-1)) Sy= 1500 psf-verlical soil bearing capacity At,a= 3.14 ft2-area of footing d= minimum depth for vertical bearing requirements Maximum vertical load on footing from gravity load Ptooung= 5,160 lbs-vertical load on footing Posthole depth for this building= 4.00 ft-minimum depth to bottom of footing Vertical capacity for footing Peuow= 7,540 lbs->Pfooting-OK Page 5 of 10 Roof and Gable Wall Shear Loads and DiaphranmDwyiqn Roof Roowidth= 13 ft. H°*~ 3.33 h. Total root wind pmo'O.8xpr '2.83 Pst(0.6»p.) Total root wind pressure muoa~ 4.80 Pst'use 0ifF!^O Total wall wind psxnuve~ 7.04 pof(0.6»(q""'A/J} Total wall wind pressure toume~ 8.60 pst'use U6x16~9.6pstminimum Diaphragm seismic load~ 112 lb»'(K,,�2)x0J Diaphragm wind load~ 408 |bn Diaphragm load touoe= 408 |ba'Wind load controls Rocdohuar~ 31 p|f Sheathing~ Metal over OSB wood sheathing A|lo°o0leuhoar~ 280 pit,Roof shear'OK 3hmathingfamoniog~ Gdnails 6 in.u.n.edges 12 in.o.u.field Gable walls Loft Gable Wall Lett gable wall shear 377 |Uo'VLGWxO7 Left gable wall shear V,,.u~ 408 |bn'tmm Diaphragm wind load above Diaphragm load toumw= 408 iba'YYinduont»o!m Left Gable wall~ 10 pit A||owah|eohoar~ 113 p|t,Wall shear OK SheathingfaoteninO~ ASxomws a|8^ox, Right Gable Wall Right gable wall shear V,,I"°i,~ 377 lbo-VRs*xO7 Right gable wall shear V",."~ 408 |Un-fmm diaphragm wind load above Diaphragm load vuumw= 408 |uo'w6nd controls-see ue/ow` Right Gable wall= 0 'pv'eeuolow^ /ulowaUleohear~ 113 pit,Wall shear'0x SoouthinOfastening~ #8 snm*n at9^o.o. *Use post-bending calculation on following paOon'vs*concrete bavk8o Page xm,u Post bending calculation This calculation determines the adequacy of the posts to resist the shear load of the walls when there are no adequate shear panels in the wall. The posts are modeled as simple cantilevers.and the load is applied to the top of the post frame system and distributed throughout all of the posts in the wall as appropriate. Gable wall with no shear panels(large openings) Intermediate posts Corner posts No.intermediate posts= 4 No.corner posts= 2 Intermediate post size= 6x6 Corner post size= 6x6 Intermediate post grade= #2 H-F Corner post grade= #2 H-F Post type= Rough-sawn Post type=Rough-sawn 4 iini,post= 108 to isomei_post= 108 in" Sint_post= 36 in3 Scomerpost= 36 in` Determine equivalent stiffness of posts based on post properties %load distributed to each intermediate post= 17% °/load distributed to each corner post= 17% Bending height,h= 144 in Total bending moment in frame from wind= 58.781 in-lbs Total bending moment in frame from seismic= 90.453 in-lbs Moment to use: 90.453 in-lbs-Seismic controls f„_,r,, t= 419 psi-bending stress in each intermediate post Fb,tntpost= 920 psi-allowable bending stress-OK tb._comer:post= 419 psi-bending stress in each corner post FE_caroer_post= 920 psi-allowable bending stress-OK Page 7 of 10 . Eove Wall Shear Loads and DianhmQmDeniqn EavewoUs 8uUUingLon0th= 13 ft. Goble wall wind pnaooue~ 9.60 pxt'use O.§x16~SGpsfminimum Diaphragm wind load~ 1.058 |Us Front EoveWall Front eave wall shear V,m, u~ 177 |bn'VrcWxO7 Front eove wall shear V�j,m~ 1,056 |0»'fmm diaphragm wind load above Diaphragm load*oume= 1,050 |bm-Windnontru|m Front ommwal|~ 176 p|f AllnwaDlenhear~ 335 pV,Wall shear 0K SAoa|hingfastpning= 8d nails @ O in.o.o.edges Block all panel edges 12 in.o.o.field Net shear panel optift~ 1.838 |be 4.712 lbe > 1938 lbw'OK Rear EuveWall Rear euve wall shear Vsc,,^~ 494 ms'VREwx07 Rear omm wall shear V"°^~ 7.055 ibo'hnm diaphragm wind load above Diaphragm load touye= 1.056 |bo'xvindcontru|a Rear oavowoU~ 81 A||owab|eshoar~ 113 p|,,Wall shear'OK Shooukinyfastooing= #9somws oK9^oz. Net shear panel upUift~ 344 |bu 4.712 |bn > 344 lbo'0K Page omm Puffin&Girt Calculations Puffin Calculation Roof Pitch: 2 /12 Roof Angle: 9.5 ° Greatest purlin span: 150 in Patin S,: 7.56 ln3 Live+dead load: 30 psf Max.o.c.spacing: 16 in.(lc. M: 9,247 in-lbf fb: 1,223 psi Fb allowable: 1,547 psi-per NDS Section 4 and Design Values for Wood Construction Purlin usage: 79% OK End reactions: Snow load: 250 lbs If joist hanging.use LU26 joist hanger w/10d nails or JB26 top-flange joist hanger wi 10d nails uplift: 158 lbs (2) 16d nails each side of purlin block or joist hanger adequate Girt Calculation Greatest Bay Spacing: 13 ft. 0.C.Spacing: 24 in Girt S„: 7.56 in3 Total wind pressure: 10.29 psf w: 1.72 phi Girt Span: 150 in M: 4,825 lbf-in lb: 638 psi Fb allowable: 2,153 psi-per NDS Section 4 and Design Values for Wood Construction Girt usage: 30% OK Page 9 of 10 Nailed Searing Blocks Calculate required number of nails and the correct o.c.spacings and bearing block size for the intermediate truss bearing posts. Posts are assumed to be#2 HF;bearing blocks assumed to be#2 HF. Total load from one truss= 1,920 lbs Allowable shear loads for nails includin. increases) 16d box nail= 140 lbs 20d box nail= 169 lbs For minimum bearing block length design using 2 rows of nails -Use 2 vertical rows of nails,staggered •Use 2"vertical spacing between nails -Use 2"minimum end distances for top and bottom of block 16d nails 20d nails Total nails required= 14 12 Minimum block length= 18 16 in. Minimum length of bearing block For full length bearing block design using 2 rows of nails -Use 2 vertical rows of nails,staggered -Determine minimum spacing but not less than 2"vertical spacing between nails -Use 2"minimum end distances for top and bottom of block 16d nails 20d nails Truss or rafter heel= 12 12 in Total block length= 138 138 in Total nails required= 14 12 Maximum nail spacing= 12 12 in.o.c.max.vertical spacing per row Page 10 of t A