Specifications Aigrzo.zi_ oz
RECEIVED
JUL 03 2021
CITY OF TIGARD
z
BUILDING DIVISION
Vr South Valley Engineering
4742 Liberty Rd. S #151 • Salem, OR. 97302
Ph. (503) 302-7020 • Fax (888) 535-6341
www.southvalleyengineering.com
Project No.
12105030
Calculations for
Rick Dodds
14875 SW 79th Ave. I,
Tigard, OR. 97224
Date
6/18/2021
Enaineer
I) •
' •OP /.,y*
4477r#
OREGON
4--
<;a,,, 4)- 9,
46)/ R. v•it.9-`
RENEWS: 6/30121
POST FRAME BUILDING SUMMARY SHEET
Owner: Rick Dodds Dame: 6/18i2021
Building location: 14875SVV7VthAve.
Tigard,OR.97224 Project No : 12105030
Building Description: Private shop Building Codes: 2019OSSC.ASCE7'16
Building dimensions: Environmental information:
Width: 40 ft. Wind speed: 100 MPH
Length: 13 h. Wind exposure: B
Height: 13 ft� Seismic design category: D
Eavnovorhong: 15 tt. S,: 0.84
Gable overhang: 1.5 M. u,: [\39
Roof pitch: 2 x2 Ground snow load: 25 nsL
Bay spacing: 13 ft, Design Snow Load: 25 pyL
Post tributary width: 13 ft. Roof dead load: 5 psLVncl,ceiling load 8any)
Concrete Slab: Yes Soil bearing capacity: 1,530 pst.
Risk Category: U Per Table 1�-1
x3CE7-10
pos,m pnmhu|oinhu,matiyn:
Corner posts: Gable wall posts:
Size: O,G Size 6x8
Grade: #2Hf Grade: w2H-F
Typo: RS` Type: RS`
Pnothole diameter: 24 in Pnothuledianemr: 24 in
Pontholedepth`': 4�00 M, PontholeUopm'': 4.00 ft.
0uhw�hco^c�to Varies-seePoo Cnn�c�n1�au�0� Pu�Conm����uc�0�
Uaomm calculations
'Rough Sawn *Rough Sawn
"To bottom offooting '`Tobnnornoffooting
Pumn & girt information:
Pu,Unm Girls
3uo: 2x8 Size: 2x0
Grade: w2D-F Grade #2D-F
Spacing: 16 in.n.r. Spacing: 24 in.oz.
Orientation: Commercial
Sheathing information:
Roof: Metal over OSB wood sheathing
mmxu: Left gable wall is29ga.metal only
Right gable wall is28ga.metal only
Front ouvo wall is metal over wood sheathing
Rear ouvo wall iuznga.metal only
Page/ w,o
Snow Load Calculations
Snow load calculations per ASCE 7-16 Chapter 7
P.: 25 psf-Ground Snow Load
Ce: 1.0 Exposure Factor from ASCE Table 7-2
1.2 Thermal Factor from ASCE Table 7-3
I,,: 1.0 Importance Factor from ASCE Table 1.5-2
Flat Roof Snow Load.p;=0.7 x p9 CA x C x I5
p,: 21.0 psf- Flat Roof Snow Load
Cs: 1.00 Figure 7.4-1 based on C,,roof slope and surface
p5: 21.0 psf-Sloped roof snow load
Pdeslgn: 25 psf-Design Snow Load
Page 2ot10
- -
Wind Pressure Calculations
Wind calculations per ASCE 7-16 Chapters 26.28 and 30
Roof Pitch: 2 /12 Design Wind Speed,V: 100 MPH
Eave Height: 13 ft. Wind Exposure: B Risk Category:
Velocity pressures qh per equation 26.10-1
clh=0.00256xKhxKzrxKdxKexV2 at mean roof height h
Angle: 9.46 °
Kh: 0.70 Velocity pressure coefficient at roof ht.h from Table 26.10-1
1.00 Topographic effect-assume no ridges or escarpments
Kd: 0.85 Wind Directionality Factor.Table 26.6-1
Ke: 1.00 Ground Elevation Factor,Table 26.9-1
Velocity Pressures:qh= 15.23 psf
Determine Velocity Pressure Coefficients&Wind Pressures per ASCE 7-16 Figure 28.3-1 for MWFRS
MWFRS
1. Windward Eave Wall Pressure 2. Leeward Eave Wall:
0.44 GCpr„7: -0.33
6.68 psf qbe: -5.05 psf
3. Windward Eave Roof Pressure 4. Leeward Eave Roof:
-0.69 GC0,. -0.40
qwr: -10.51 psf qui: -6,13 psf
5. Windward Gable Wall: 6. Leeward Gable Wall:
0.40 Cpiwg: -0.29
6.09 psf cliw: -4.42 psf
Components&Cladding
GC,,: 0.18 Internal pressure per Table 26.13-1
7. Roof elements
-0.82
ger: 15.19 psf Roof elements per Figure 30.3-2A thru I
8. Wall elements:
GCpw: -0.95
ger: 17.15 psf lWall elements per Figure 30.3-1
Page 3 of 10
Seismic Design Parameters
Calculate seismic building loads from ASCE 7-16 Chapters 11 & 12
Seismic Parameters
Ss= 0.84 S1= 0.39
1.16 F.= 1.91 per Tables 11.4-1 & 11.4-2
$M;= 0.98 SM= 0.75 Calculated per Section 11.4.3
Sos= 0.65 Sol= 0.50 Calculated per Section 11.4.4
Seismic Design
Category= D From Section 11.6 Importance factor: 1.00
F= 1.0 for 1 story building
Response Mod.Factor R:
Roof: 7 From Table 12.14-1,Section B-22
Left gable wall: 2.5 From Table 12.14-1.Section B-24
Right gable wall: 2.5 From Table 12.14-1.Section B-24
Front eave wall: 7 From Table 12.14-1,Section B-22
Rear eave wall: 2.5 From Table 12.14-1,Section B-24
Calculate building weights.W.for seismic forces
Building width= 40 ft. Building length= 13 ft. Building height= 13 ft.
Roof area= 688 sf Gable wall area= 327 sf Eave wall area= 84.5 sf
Root+ceiling DL= 5 psf Snow LL(if appliable)= 0 psf Roof W= 3,440 lbs
Loft(y/n): n Loft dead load: N/A pst Full or partial loft: N/A
Wall Areas Building dead loads Loft dead loads
Left gable wall: 327 SF Left gable wall: 3 psf Left gable wall: 0 lbs
Right gable wall: 327 SF Right gable wall: 3 psf Right gable wall: 0 lbs
Front eave wall: 85 SF Front eave wall: 5 psf Front eave wall: 0 lbs
Rear eave wall: 85 SF Rear eave wall: 3 psf Rear eave wall: 0 lbs
Calculate Seismic Base Shear, V per Section 12,14.8
V=[(FxSos)/R]XW (Egn. 12.14-12)
Total dead loads,W find roof.loft)
Roof: 3,440 lbs Vrool= 321 lbs base shear for roof diaphragm
Left gable wall: 980 lbs VLGW= 538 lbs base shear for wall diaphragm
Right gable wall: 980 lbs VRGw= 538 lbs base shear for wall diaphragm
Front eave wall: 423 lbs VFEw= 252 lbs base shear for wall diaphragm
Rear eave wall: 254 lbs VREw= 706 lbs base shear for wall diaphragm
Page 4 of 10
Post Embedment Calculation
Determine the minimum posthole diameter and embedment depth for the corner posts
per ASAE EP486.1
Since there is a slab,the post will be considered constrained at the top.
The backfill will be concrete full depth.
Design Criteria:
Sy= 1500 psi-vertical soil bearing capacity
S. 150 psf•lateral soil bearing capacity
M„o,= 1.591 ft-lbs- Moment at top of one posthole
V,= 245 lbs-Lateral load on post at top of posthole
Posthole dia.= 2 ft.
b= 2.00 ft-maximum width of post in soil(=posthole diameter if concrete backfill)
A;,,= 3.14 ft`-area of footing
d= - ft-depth of footing to be determined below
Per Sections 4.2.2.1 and 4.2.2.2,allowable lateral soil bearing capacities may be increased
by 2 for isolated posts(spaced at least 3 ft. apart).and by 1.33 for wind loading
SLAT= 294 psf-factored lateral soil bearing capacity
Minimum embedment depth required for lateral load.constrained at the top,concrete backfill,per Section 6.5
concrete backfill,per Section 6.5
d,,,;r,_ [(4 x Mpost)/(SLAT x b)[^113 dmi„ L= 2.21 ft.-minimum depth requried for
lateral load
Allowable vertical soil bearing pressure for gravity loads
S,, Sr x Anq x(1+(0.2 x(d-1))
Sy= 1500 psf-verlical soil bearing capacity
At,a= 3.14 ft2-area of footing
d= minimum depth for vertical bearing requirements
Maximum vertical load on footing from gravity load Ptooung= 5,160 lbs-vertical load on footing
Posthole depth for this building= 4.00 ft-minimum depth to bottom of footing
Vertical capacity for footing Peuow= 7,540 lbs->Pfooting-OK
Page 5 of 10
Roof and Gable Wall Shear Loads and DiaphranmDwyiqn
Roof
Roowidth= 13 ft.
H°*~ 3.33 h.
Total root wind pmo'O.8xpr '2.83 Pst(0.6»p.)
Total root wind pressure muoa~ 4.80 Pst'use 0ifF!^O
Total wall wind psxnuve~ 7.04 pof(0.6»(q""'A/J}
Total wall wind pressure toume~ 8.60 pst'use U6x16~9.6pstminimum
Diaphragm seismic load~ 112 lb»'(K,,�2)x0J
Diaphragm wind load~ 408 |bn
Diaphragm load touoe= 408 |ba'Wind load controls
Rocdohuar~ 31 p|f
Sheathing~ Metal over OSB wood sheathing
A|lo°o0leuhoar~ 280 pit,Roof shear'OK
3hmathingfamoniog~ Gdnails 6 in.u.n.edges
12 in.o.u.field
Gable walls
Loft Gable Wall
Lett gable wall shear 377 |Uo'VLGWxO7
Left gable wall shear V,,.u~ 408 |bn'tmm Diaphragm wind load above
Diaphragm load toumw= 408 iba'YYinduont»o!m
Left Gable wall~ 10 pit
A||owah|eohoar~ 113 p|t,Wall shear OK
SheathingfaoteninO~ ASxomws a|8^ox,
Right Gable Wall
Right gable wall shear V,,I"°i,~ 377 lbo-VRs*xO7
Right gable wall shear V",."~ 408 |Un-fmm diaphragm wind load above
Diaphragm load vuumw= 408 |uo'w6nd controls-see ue/ow`
Right Gable wall= 0 'pv'eeuolow^
/ulowaUleohear~ 113 pit,Wall shear'0x
SoouthinOfastening~ #8 snm*n at9^o.o.
*Use post-bending calculation on following paOon'vs*concrete bavk8o
Page xm,u
Post bending calculation
This calculation determines the adequacy of the posts to resist the shear load of the walls when there are no
adequate shear panels in the wall. The posts are modeled as simple cantilevers.and the load is applied to the
top of the post frame system and distributed throughout all of the posts in the wall as appropriate.
Gable wall with no shear panels(large openings)
Intermediate posts Corner posts
No.intermediate posts= 4 No.corner posts= 2
Intermediate post size= 6x6 Corner post size= 6x6
Intermediate post grade= #2 H-F Corner post grade= #2 H-F
Post type= Rough-sawn Post type=Rough-sawn
4
iini,post= 108 to isomei_post= 108 in"
Sint_post= 36 in3 Scomerpost= 36 in`
Determine equivalent stiffness of posts based on post properties
%load distributed to each intermediate post= 17%
°/load distributed to each corner post= 17%
Bending height,h= 144 in
Total bending moment in frame from wind= 58.781 in-lbs
Total bending moment in frame from seismic= 90.453 in-lbs
Moment to use: 90.453 in-lbs-Seismic controls
f„_,r,, t= 419 psi-bending stress in
each intermediate post
Fb,tntpost= 920 psi-allowable bending stress-OK
tb._comer:post= 419 psi-bending stress in
each corner post
FE_caroer_post= 920 psi-allowable bending stress-OK
Page 7 of 10
.
Eove Wall Shear Loads and DianhmQmDeniqn
EavewoUs
8uUUingLon0th= 13 ft.
Goble wall wind pnaooue~ 9.60 pxt'use O.§x16~SGpsfminimum
Diaphragm wind load~ 1.058 |Us
Front EoveWall
Front eave wall shear V,m, u~ 177 |bn'VrcWxO7
Front eove wall shear V�j,m~ 1,056 |0»'fmm diaphragm wind load above
Diaphragm load*oume= 1,050 |bm-Windnontru|m
Front ommwal|~ 176 p|f
AllnwaDlenhear~ 335 pV,Wall shear 0K
SAoa|hingfastpning= 8d nails @ O in.o.o.edges
Block all panel edges 12 in.o.o.field
Net shear panel optift~ 1.838 |be 4.712 lbe > 1938 lbw'OK
Rear EuveWall
Rear euve wall shear Vsc,,^~ 494 ms'VREwx07
Rear omm wall shear V"°^~ 7.055 ibo'hnm diaphragm wind load above
Diaphragm load touye= 1.056 |bo'xvindcontru|a
Rear oavowoU~ 81
A||owab|eshoar~ 113 p|,,Wall shear'OK
Shooukinyfastooing= #9somws oK9^oz.
Net shear panel upUift~ 344 |bu 4.712 |bn > 344 lbo'0K
Page omm
Puffin&Girt Calculations
Puffin Calculation
Roof Pitch: 2 /12
Roof Angle: 9.5 °
Greatest purlin span: 150 in
Patin S,: 7.56 ln3
Live+dead load: 30 psf
Max.o.c.spacing: 16 in.(lc.
M: 9,247 in-lbf
fb: 1,223 psi
Fb allowable: 1,547 psi-per NDS Section 4 and Design Values for Wood Construction
Purlin usage: 79% OK
End reactions:
Snow load: 250 lbs If joist hanging.use LU26 joist hanger w/10d nails
or JB26 top-flange joist hanger wi 10d nails
uplift: 158 lbs (2) 16d nails each side of purlin block or joist hanger adequate
Girt Calculation
Greatest Bay Spacing: 13 ft.
0.C.Spacing: 24 in
Girt S„: 7.56 in3
Total wind pressure: 10.29 psf
w: 1.72 phi
Girt Span: 150 in
M: 4,825 lbf-in
lb: 638 psi
Fb allowable: 2,153 psi-per NDS Section 4 and Design Values for Wood Construction
Girt usage: 30% OK
Page 9 of 10
Nailed Searing Blocks
Calculate required number of nails and the correct o.c.spacings and bearing block size for the intermediate truss
bearing posts. Posts are assumed to be#2 HF;bearing blocks assumed to be#2 HF.
Total load
from one truss= 1,920 lbs
Allowable shear loads for nails includin. increases)
16d box nail= 140 lbs
20d box nail= 169 lbs
For minimum bearing block length design using 2 rows of nails
-Use 2 vertical rows of nails,staggered
•Use 2"vertical spacing between nails
-Use 2"minimum end distances for top and bottom of block
16d nails 20d nails
Total nails required= 14 12
Minimum block length= 18 16 in. Minimum length of bearing block
For full length bearing block design using 2 rows of nails
-Use 2 vertical rows of nails,staggered
-Determine minimum spacing but not less than 2"vertical spacing between nails
-Use 2"minimum end distances for top and bottom of block
16d nails 20d nails
Truss or rafter heel= 12 12 in
Total block length= 138 138 in
Total nails required= 14 12
Maximum nail spacing= 12 12 in.o.c.max.vertical spacing per row
Page 10 of t
A