Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
AMODEO STRUCTURAL ENGINEERING AMDDED 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 II III\ Clean Water Services - Durham WWTF - Structural Analysis and Design Client: Resolve Architecture - John Flynn Site location: Tigard, Oregon 4 References: 2019 Oregon Structural Specialty Code, 2018 IBC and ASCE 7-16 11')0�fa,, ASE project #19535 .str .` 4.NGINfFPCy- Scope of engineering work: 15370 1 - Canopy extension at O&M Building OREGON 2 - Relocation of Maintenance Storage 9c,�yy s° F� y/RD J. P��2 Item (1) = Canopy Extension/Loadi g Dock Roof: _ EXPIRES 12-31-2021 * match layout of 2017 canopy remodel * try to get one single cantilever column to resist the loading * cantilever columns in SDC D require overstrength factor (f2o) * try(2) HSS 8x4x1/2 posts * try HSS 10 x 4 x 1/2 beams at 4'-4";o.c. (cant. = 19'-8") * new roof goes over existing roof at north and south sides * at the west side, the new canopy butts into exist. fascia, but max. step is 2' * use same deck as previously, but with shorter spans, deck,is 9x stiffer * deck is 1.375" deep - 18 gage mini V roof deck (weight = 2.4psf) * deck capacity > 250psf at the 4'-4" span (4' or less clear) ** Note that design work shall conform to the 2019 OSSC far Risk Category III structures Gravity Loads: DLD,.,k:=2.4•psf DLMi3e:=2.6•psf DLT,dp:=DLDeck+DLmi„=5.0 psf Snow Loading Calculations: based on the 4th edition of the Snow Load Analysis of Oregon pg:=10.0•psf I8 =1.1 pmi„:=p9•Ig=11.0 psf (Constrained, need to use 25psf for rain-on-snow) Ce;=1.0 Ct;=1.2 pf:=0.7•C,•Ct•Ig•p9=9.2 psf hd:=1.3•.ft (based on a 41' width;and lOpsf ground snow) 0.13.p, -y ft +13•pcf=14.3 pcf SnowD,,E fted:=(hd• y)+p f=27.8 psf Snowfi :=25.0•psf•I3-27.5 psf (minimum uniform per Oregon code) Durham WWTF Page 1 O&M - 2019 - Structural Project #19535 ��- AMODEO STRUCTURAL ENGINEERING - 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 AINI MIL W12 x 30 beam check: interior case controls without drift WDL:=4.33•ft.(DLTyp)+30•pif=52 pi f Note: See page #9 for updated w 4.33•ft•SnowMin=119 plf calculations for adjusted dims, sL'= height and overall geometry ... wult:=1.2•wDL+1.6•wsL=253 plf /cu„4:=19.67•ft 1-Dult•lcant2 _48.8 ki MTyv ult:= 2 ft. p Meap:=161.6•ft•kip > 48.8'k, therefore ok, but look at deflection wdeflection:=11113E+'wSL=171 plf Es:=29000•ksi IW12:=238•in4.. . wdeflection•lcant1 /cant =1.31 in •E 'W121- 8 =0.80 in L w12'allmaable•= 180 s•I W12 * a W12x22.or larger would be ok, but consider additional deflection of the posts ... (try the double HSS 8x4x1/2 on their minor axis: I = 47.2) hest:=12.0•ft Checks: * For axial, use full-snow on entire roof * For flexure, use full-snow on half the roof and no snow on the other half * For deflection, use full-snow on half the roof and half-snow on the other half Deflection check first- as this appears to be the critical condition ... 2 MPost minor asd'=0.25•SnowMin•(20.5.ft) •13.0•f t=37.6 ft.kip * consider(2) independent posts on their minor axis: I = 23.6 and M = 18.8'k * results are the double posts move 2.16" laterally(minor axis) and the top rotates 1.72° ... review significance of this deflection at far end of beam cantilever ... 8:=1.72 ° sin(6)=0.03 Qadd'1 leant.sin(0)=7.08 in Qlimtt.'—QW12 allowable Awn=0.51 in Durham WWTF Page 2 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING A ooE= 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 * tie the (2).1/2"wall HSS posts together so that they act as.one: M =. 23.8'k IPo9t:=(2.23.6•in°)+(2.9.74'•in2 •(4•in) )=359 in 2 ' * results are the double posts move 0.28" laterally and the top rotates 0.226° ... review significance of this deflection at far end of beam cantilever ... 9:=0.226 ° sin(0),0.004 d04d2:=hnt'•sin(0)=0.93 in > 0.51", therefore no good * try using the 5/8" wall: Ipost:=(2.26.6•in°)+(2.11.7•in2 •(4•in)2)=428 in4 * results are the double posts move 0.24" laterally and the top rotates 0.190° ... review significance of this deflection at far end of beam cantilever ... 8:=0.190_° sin(B)=0.003 'Aaddl leant'Sin(0)=0.78 in > 0.51", therefore no good * try using (2) HSS 8x4x1/2 but hold 6" apart: Ip :=(2.23.6•in4 +(2.9.74•in2 •(5•in)2)=534 in' * results are the double posts move 0.14" laterally and the top rotates 0.109° ... review significance of this deflection at far end of beam cantilever ... 9:=0.109 ° sin(6)=0.002 dddd.t;=leant•sin(0)=0.45 in < 0.51", therefore ok- keep the W12x30 beams Note: we need to tie the (2) posts together using VQ/I so that they act as one. Also do a preliminary check of the posts with snow moment and axial load. Minor Axis strength: the only unbalaced gravity load is snow(full-snow at one side only): 2 MPost�lexeare_udt_rr6dreor:=.1.6.0..5.•Snow,y1E„•(13.0•ft) •20.5•ft=.76.2 ft•kip chMn_7,nst_minor'=0.9.2-46.0..ksi•14.3•in3=98.7 ft•kip > 76.2'k, therefore ok * ok for flexure.using.the fully-unbalanced case and conservatively not using the total Z Durham WWTF Page 3 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODED 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 HSS 8 x 4 x 1/2 tube beam check - Pi1tinterior:=0.5•Wulf•41.0•ft_=5.2 kip Pvlt exterior'=0.5•Pult_interior=2.6 kip 2 (35.2•pif•(7.92•ft) l= Pultinterior•3.58•f t)+ Ptxteor•7.92•f t>+ 1=40.1 ft•kip 2 c5Mn Hss bearm:=0.9.46.0•ksi•23.5•in3 =81.1 ft-kip > 40.1'k, therefore ok Pinterior:=0.5•Wdeflection•41.0•ft=3.5 kip 1Hs5_int:=3.58•ft Pexterior:=0.5•Pinterior=1.7 kip IHSS_ext:=7.92'ft IHas:=71.8•in4 „ Pinterior•IHSSint3 + Pexterior'lwSS_ext3 + 35.2•plf 1HSS_ext4 Hss:=l 3 Es•I ) ( 3•Es•I , ( 384•E •I HSS HSS s• HSS 0.29 in IHSS ext QHSS_atlowable:=. _180 =0.53 in _. ._ * an HSS8x8x1/2 or larger would be ok, but consider additional deflection of the posts ... (look at the double HSS 8x4x1/2 on their major axis: I = 2 x 71.8 = 143.6) host'=12.0•ft Checks: * For axial, use full-snow on entire roof * For flexure, use full-snow on half the roof and no snow on the other half * For deflection, use full-snow on the entire roof, since roof is eccentric in layout Deflection check first - as this appears to be the critical condition ... Psnow int' SnowAf •4.33•ft•20.5•ft=2.4 kip Psnow_ext°=0.5•Psnaw_int=1.2 kip z NI . •ft�+�P . •ft� { (35.2•plf•(7.92•ft) )_27.5ft•kip = 358anterior exr•792 2 r2 M = 0.08;ft)+(P 4.42•ft) FI35.2•plf•�4.42•ft� =8.4 ft•kip asd_neg' xntereor• exterior' l 2 Masd_net:=Masd_pos—Masd_neg=19.1 ft•kip Durham WWTF Page 4 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMODED 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 r * results are the double posts move 1.14" laterally(major axis) and the top rotates 0.91° ... review significance of this deflection at far end of beam cantilever ... 0:=0.91 ° sin(6)=0.016 �add4'=lHSS_ext•sin(0)=1.51 in dtarnit.:=dHSs allovjabte-JIHSS=0.24 in * note that DL is approximately 30% of TL, therefore with these sizes the front of the canopy will lean down 1/2". Try using HSS10x4x1/2 members at beams and also for the double post: IHss:=129•in4 = P. ter•o •1 SSnt3 Pxte ••1H Ssext3 35.2•plf•1Hssxt4 dHSs' H _i + r _ + _ 3•Ea.IHSS 3•Es IHSS 384.Es IHSS 1l=0.16 in * results are the double posts move 0.63" laterally(major axis) and the top rotates _ 0.50° ... review significance of this deflection at far end of beam cantilever ... 0:=0.50 ° sin(8)=0.009 Qadd'I'=lHSS_ext•sin(9)=0.83 in Qtotal:-dHSs+daddl=0.99 in * ok, lets try using HSS12x4x1/2 and height = 11' to underside of framing: I = 210 * results are the double posts move 0.33" laterally(major axis) and the top rotates 0.29° ... review significance of this deflection at far end of beam cantilever... IHss:=2(10•in4 Pinterior•lHSS_int 3 I I Pexterior•tHSS_ext 3 I 35.21 •Pi f•1HSS_ert 4 DHSS'= 3•E +II\ 3E ,I +II =0.10 in s•I HSS , s HSS 384•E s.I HSS 8:=0.29 ° sin(6)=0.005 Qadd'd'=lHss_ext•sin(6)=.0.48 in '.. , atotal'-dHSs+Alden-0.58 in * this is close enough, knowing that only 2/3rds _ occurs due to snow load (or 0.38"), therefore ok Durham WWTF Page 5 O&M - 2019 - Structural Project #19535 AAMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com P.O.Box 83343 I Portland,OR 97283 AV Ilk Note: the double HSS.12x4x1/2 post has much more axial capacity that their load ... the next step to confirm this single-support design is workable, is looking at seismic loads. The load combinations that include lateral (wind and seismic) to consider are: * 1.2DL + 1.OWL+ 0.5SL * 1.2DL + 1.6SL + 0.5WL * 1.2DL + 1.0EL + 0.2SL * 0.9DL + 1.0E Note that Seismic design controls over wind design, but check the snow + wind cases also. Also note that strength (not deflection) controls the analysis of the posts and the foundation. If we do want to look at stiffness, Imajor = 420 and Iminor = 503. Globally,major axis controls. 2 /Post:=(2.35.3.in4)+(2•13.5•in2 •(4•in)' )=503 in4 (put back to 4" apart). Wind Lateral Loading: ASCE 7-16 chapter 29 (other structures) Basic wind speed (3-sec gust): Volt:=130 (Risk Category III) Wind Exposure category = B Topographic Factor: Kzt:='1.0 Directionality Factor: .Kd:=0.85 Vel. Press. Exp. Coeff.: Kz:=0.57 Ground Elevation Factor: Ke:=1.00 Gust effect Factor: G:=0.85 Drag Factor: C f:=1.80 Velocity Pressure:_ _ qX =0.00256•Kzt•Kd•Kz•KQ•Vutt2 •psf=21,0_psf WDesign Vz, ressure:=qz•C•Cf=32.1 psf (load is ultimate) wwind_tat.:=1,25,•f t.•4UDesignWindPressure-40 pl f FNS_Longitudinal:=13.0 r f t•wu:ind_uEt=521 lbf FEW_Transverse:—41.0.ft•41)21dnd ult=1644',lbf * review both directions for all load cases ... Min Ns:=12.0•ft•FNs_Laa9;tudznaz 6.3 ft•kip MtVL_EW:=.12.0•ft•FEW_Transverse=19.7 ft.kip Durham WWTF Page 6 O&M - 2019 - Structural Project #19535 EWAAMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com amodeose.com I P.O.Box 83343 I Portland,OR 97283 pDL_interior:=41.0•f t•52•pl f=2.1 kip PDL_emterior 41.0•f t•31•plf=1.3 kip rz M :=(P •3.58• t)+(P •7.92•ft)+135.2•plf•�7.92•ft� )=18.8ft•kip DL_asd_ DL_interiar• f DL_exterdor t 2 ( 2 M 9:=(P 0.08• t)+(P 4.42•ft)+135.2•plf•�4.42•ft) 1_6.1 ft•kip DL_osd_ne DL_interior f DL exte>•ior• ` 2 1 MDL_osd_net:=MUL_asd,pos-MDL_asd_neg=12.7 ft•kip PSL interior:=0.5.41.0•ft•wsL=2.4 kip PsL_exteriar:=0.25.41.0•f t•wsL=1.2 kip MEL_asd_net:= (PSL_interiar•3.58•f t)+(PSL_exterior•7.92•f t)=18.4 f t•kip Seismic Lateral Loading: ASCE 7-16 chapter 12 Latitude 45.40°N,Longitude: 122.76°W Sds:=0.679 (seismic risk category III) Ie:=1_25 RCantcols:=2.5 (Special Steel Cantilevered Cols) Q0:=1.25(Overstrength factor at foundation) ds Cs c, =0.34 ItCant_CoLs Ie FDL_Canopy:=(2•PDL_interior)+(2•PDL_exterior)=6.8.kip FEQ:=Cs_cc•PDL_Canopy=2.3 kip MEW =11.5.•ft•FEQ=26.6 ft•kip Summary of Loads: column axial load < 15% of column axial strength ... ok by inspection North-South: PDL:=6.8•kip East-West: PDL:=6.8•kip PsL:=14.7•kip PSL:=14.7•kip MDL NS: 0.0•ft•kip MDL_Ew:=12.7.ft•kip MSL NS:=37.6•f t•kip MSL_Ew:=18.4.ft.kip MWLivs:=6.3•ft•kip MWLEw:=19.7,ft•kip MEQ_Ns:=26.6•ft•kip MEQ w:=26.6.-ft•kip Durham WWTF Page 7 O&M - 2019 - Structural Project #19535 , EWA AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 Foundation Pier Design: design for overstrength factor; pier is constrained by pavement - PTL:=PDL+PSL=21.5 kip * anticipate 10' depth to bottom of pier 9au:=1.5.•ksf±(10•ft•110•pcf)=2.6 ksf drega:=2. PTL =3.2 ft * try a 42" diameter x 10' deep pier y gal/• * due to overstrength factor, load case with EQ controls Case 5: M5_and_Ew:=((1.0+(0.14•Sds)) •MDLEW)+(0.7.0,•MEQE1,0=37.2 ft•kip M5_3.sNs:_ ((1'.0+(0.14•S ))•MDLNS)+(0.7•520•MEQevs)=23.3 ft•kip Case 6b: Msba9d_EW:=((1.0+(0.105•Sd,)) •MDLEW)+(0.525.120•MEQ ,)+(0.75•MsL_Ew)=44.9 ft•kip ' Msb_asd_NS'=((1.0+(0.105•S ))•MDL Ns)+(0.525.(20•MEQ NS)+(0.75•MsL_Ns)=45.7 ft•kip Constrained and.7.2' deep.: .M9:=45.7•ft•kip b =3.5•ft S3:=150'•pcf•7.2.ft=1080 psf I4.25•My _ depth,.ey.,d c:= S3.b 7.2 ft Unconstrained and 10.8' deep: M9:=45.7•ft•kip b:=3.5-ft S, 150•pcf•10.8•ft -540psf Ms P:= =4.0 kip 11.5•ft 2.34-P A = =4.9 ft Si.b 05 depthreydnc:=(0.5•A)•(i+(i+(436 '5 ftll 10.7ft Durham WWTF Page 8 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING • AMODE❑ 503 804 9397 I rick@amodeose.com I amodeose.com l P.O. Box 83343 I Portland,OR 97283 AI II& depthreg := d_dVe0.5•(depthT q'd_c+depthr.q,d_„e)=8.9 ft (use 9.0', since the asphalt may not be a fully-restrained surface) * USING A 30% INCREASE DUE TO THE 15''HEIGHT: Constrained and 7.84' deep: Mg: 1.3.45.7•ft•kip=59.4 ft.kip S3:=150•pef•7.84..ft=1176 psf I4.25.1UIg _ depthTeq,d _7.83 ft S3•b Unconstrained and 11.79' deep: S' 150•pcf•11.79•ft i ' 3 =589.5 psf M P:= g 5.0 kip 1I1.790•ft' 2.34•P A:= =5.7 ft - Si• b rr rrr 110. 1�0.5• �• 1+ 1+ 4.36• .5'ft depthregc = =11.79 ft depthreq'd_ave:=_0.5•(depthregd_c+depthreq d_„c)=9.8 ft Revisit calculations based on final geometries: h=15.7' * check W12x22 beams: .wDL:=4.33•ft•(DLTvp)+22.plf=44 plf wsL:=4.33•ft•SnnOWM;„=119 plf w,at:=1.2.wDL+1.6•wSE=243 plf leant:=15.92.•ft mutt•leant z LiTyp_„tt'= 2 =30.8 ft-kip Ma,p:=110.0•ft•kip.> 30.3'k, therefore ok, but look at uplift and deflection wutt_upatift: (4z•4.33•ft•(0.70+0.88))—(0.9•wDL)=104.1 plf wuit_uplift•benta Muptaft_„tt:= 2 =13.2 ft.kip - Mrap2iptift:=16.2.ft•kip (at 15.9' unbraced length), therefore ok in uplift Durham WWTF Page 9 O&M - 2019 - Structural Project #19535 AMAAMODEO STRUCTURAL ENGINEERING ODED 503.804.9397 l rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 wdeflectim2 "MDL+wsL=163 plf ER:=29000•ksi 4.712x22 =156•in' 4 Q wdeflection•tcant 0.50 in Q tcant _1.06 in W 12: W12_alLou:able:= 8•Es•Jw12x22 180 * Double HSS12x4x1/2: Imajor = 420 and.Iminor = 503 e:=3.42-ft MPostmajor_osd'=0.25.St owm„,-(8.25•ft+0.5,e) •33.5•ft=22.8 ft•kip a M Post.minor asd: 0.25.Snow Alm•(16.75•f t). '•13.0•f t_=_25.1 f t-kip Ratio ,,:= 420 =18.4 Ratiomina,.:= 503 =20.0 (minor axis controls) 22.8 25.1 0:=0.223 ° sin(6)=0.004 Aadd l lHSS_ext•sin(8)=,0.37 in Atotai'=DHSS+' add2=0.47 in (ok) Updated Summary of Loads:_ column axial load < 15% of column axial strength ... h = 15' North-South: PDL:=7.8•kip * East-West: PDL:=7.8.kip * PSL:=11.9•kip *. PSL:=11.9.kip * MDL Ns'=0.0•ft•kip x MDL_EW:=11.8.ft•kip * MsLNs:=24.6•ft-kip MsL-Ew:=14.9•ft•kip MWLNS:=7.9•ft•kip x MWL_EW:=19.9.ft•kip * MEQNs:=35.9•ft;kip x MEQEw:=35.9.ft.kip x Case 5: M5_,,d Etc:=((1.0+(0.14•S ))•MDL_EW)+00.7•°O.MEQ_E )=44.3 ft•kip M5 osd_NS;_((1.0+(0.14.s ))•MDLNS)+(0.7-(1o•MEQNs)=31.4 ft•kip Case 6b: Msbasd_ v'=((1.0+(0.105.5d9)) •MDLEW)+(0.525•.flo•MEQ ,y)+(0.75•MSL_FW)=47.4 ft•kip Msb_osd_NS'=((1.0+(0.105•S )) •MDL Ns)+(0.525•,flo•MEQNS)+(0.75•MsL_Ns)=42 ft•kip Durham WWTF Page 10 O&M - 2019 - Structural Project #19535 EWAAMODEO STRUCTURAL ENGINEERING AMoDE❑ 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 Re-verify Foundation: Unconstrained and. 9' deep: M9:=47.4•ft•kip b:=3.5•ft - 150•pcf•9-ft si:= =45074 3 M 2.34•P P:= s —3.3,kip A:= =4.9 ft 14.5•ft Si-b ( r( 0.5 1 depthreq'dne =(0.5•A)•I1+I1+(4.36•11.5•ft1) -10.6 ft_ Constrained and 7' deep: M9:=47.4•ft•kip S3,:=150•pcf•7•f t=1050 psf I4.25•M9 depthrega e: V S3•b =7.4 ft Depthreq'd_ave:=0.5•(depthTeq d_e+depthreQg_,u).=9.0 ft (use 9') Built-up column tie (for stiffness only): using(2) HSS 12 x 4 x 1/2 2 'Post_Buiat_Up:=(2.35.3•in')+(2.13.5•in2 •(4•in) )=503 in4 FEQ:=Cs_,,,•PDL=.2.6 kip Q: 13.5•in2 •4-in=54 in3 H UEtintate orShear •= FEQ•Q•4•ft =13.7 kip * provide a HSS 4x4 x 3/8 blocking IPost_Buiat_Up * with 20" of weld at top and bottom, minimum weld is adequate * flare-bevel is 5/8 x 1/4" = .1563" = 2.5 x 1.392k/in = 3.5k/in * therefore we need 13.7k/3.5k/in'= 4" of weld < 20" provided Anchor bolts and baseplate design: Muat sasel:=1.4•M9=66.4 ft•kip FEQ Vuat ABB:= 8 =0.3 kip Muat_Base Tuat_AB's:= =15.6 kip 3.17-in Durham WWTF Page 11 O&M - 2019 - Structural Project #19535 EWAAMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland, OR 97283 AEI Ilk uit_BasePlate'=3•Tult_AB's•1.5•in=70.3 in*kip F'y_Base,Plate:=36•ksi 2 * trya 2.5" thick base late: Z ,_ 18•in•(2.5• n� =28.1 in3 p BasePlate 4 C5Mn_BasePlate°=0.9•Fy_BasePlate•4asePlate=75.9 ft;•_kip > 74.7'k,therefore ok Welding to BasePlate: Tu:-itlult_Base =99.5 kip 8•zn Perimeter;=2 (12•in+4•in)=32_in Tu kip tult_weld_1`=Perimeter =3.1 in Mult weld':=0.5•Melt Bose 33.2 ft•kip - - 2 (12•in) Suield: (4•in•12• n)+ 3 =96 in2 Mutt weld kip _. . .. tua_weld_2' =4.1 °weld in * use',a 1/2"fillet weld for stiffness Anchor Bolts: extend into pier cage a minimum of 36 Tint nRs=15.6 kip * to match existing, try #6 galvanized Williams grade 60 all-thread rebar * ultimate capacity = 39.6k > 15.6k, therefore ok * allowable capacity = 26.4k > 11.1k,'therefore ok /dl._ 60•ksi .0.75.•'.zn=28.5.in < 36", therefore ok (25• •p5i2 3.60•ksi•0.8 0.75•in=17.1 in. < 36", therefore ok 40•V4000•psi2 •2.5)' Durham WWTF Page 12 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 1 MIL Item (2) = Storage Structure: * 8" concrete walls at(3) sides for robustness and for attaching items * use (4) full-height HSS8x4 posts and (6) stub posts on the top of the concrete walls * deck is 1.5" deep 18 gage type B roof deck (weight = 2.9psf) * deck capacity > 74psf at the 8'-0" clear span (always require a min. of 2-span deck) * use the walls as the lateral system (since they are stiff) * provide a 2" seismic separation at the existing-to-new joint Gravity Loads: .DLDeek:=2.9•psf DLMisc:=5.1•psf (possible suspended loads) DLTvp'=DLDeck+DLMssc=8.0 psf Snow Loads: SL:=SnowMtn=27.5 psf W10 x 15 beam check: interior case controls without drift WDLW:=8.25•ft•(DLTvr)+15•plf=81 plf wsL w:=8.25•f t•SL=227 plf wnit_w:=1.2•WDL_w+1.6•wsL 11, 460 plf lspan:=16.3•ft 2 wult_W•lsm= M�'vp_ult;= 8 =15.3 ft•kip Mcap:=60.0•ft•kip > 15.9'k, therefore ok, but look at deflection wdefiection:=WDL_w'+wsL_W=308 plf Es:=29000•ksi Iw10x15:=69.•in' 4 Q 5-wdeflection'/spar =0 24 in Q lspan =1.09 in w12:= 384•E •I wio allowable•= 180 s 4[i0xi5 watt_uplift:=(4z-.8.25-ft-(0.70+0.88))—(0.9•wDL W)=200 plf 2 wult_upiift'lspan _ Muplift_ult:= 8 —6.7 ft•kip Mcap_uplift:=7.9•ft•kip (at 16.3' unbraced length), therefore ok in uplift Durham WWTF Page 13 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODED 503.804.9397 I rick@amodeose.com amodeose.com I P.O.Box 83343 I Portland,OR 97283 C10 x 15.3 beam check: exterior case controls without drift wDL c:=4.25•ft•(DLTyp)+40•pif=74 pif (includes fascia framing) wsL_C.=4.25•ft•SL=117 pif wutt_C:=1.2•wDL_C+1.6•wsL_c=276 plf 1,p„:=16.3•ft 2 Wu/LCispan -9.2 f t•kip MTVP_ult:= 8 Ma7,:=42.9•ft•kip > 9.5'k, therefore ok, but look at deflection wdefleetaon:=WDLC+WSL_C—191 plf IC1ox15.3:=67•in4 4_ 5•wdefleetion•tspan =0.16 in u, lspdn 1.09 in �wla 384•E •f — w1o_attoabte• 180 s• C1°x15 3 watt_uplift:=Oz..4.5•ft•(0.70+0.88))—(0.9•wDL_C)=82 pif 2 wultuplaft•lspan MUplaft_ult°= 8 2.7 f t.•kip Meap_uptift:=7.9•ft•kip (at 16.3' unbraced length), therefore ok in uplift W10 x 30 girder check: use interior (worst-case) location PDL:=wDL w•16.6•ft=1.3 kip PsL:=WSL w•16.6-.ft=3.8 kip Putt:=1.2•PDL+1.6•PsL=7.6 kip. WDL_garder=30•plf wult_garder:=1.2•wDL rder=36 plf lgirder:=24.0•f t Putt•lgcrder wult_gtrder•lgirder Mgarderult: + =63.7ft•kip 3 8 Meap:=137•ft•kip > 63.7'k, therefore ok, but look at deflection Iwiox3o:=170•in4 Durham WWTF Page 14 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMDDED 503.804.9397 I rick@amodeose.com I amodeose.com I P.Q.Box 83343 I Portland,OR 97283 Q 5•wdeflection•lgirder4 + 0.036•(PDL+PSL)•lgirder3 1.18 2n gzrder• _384.E •IA — s 10x30 Es•IW10x30 girder_allowable = 240r =1.20 in > 1.18", therefore ok * without snow,the deflection is: 5•wdeflection•19irder4 0.036•PDL•lgirder3 girder° + =0.52 in 384•Es•Iw10x3o Es•IW1o.r3o DeflectionRatio:= lglyder =550 (therefore ok) Llgirder W10 x 15 outrigger beam: at west cantilever WDL_WC:=3.5.ft•(DLTVp)+40•plf=68 pif (includes fascia framing) • WsL wc2=3.5•ft•SL=96_plf wuit_wc'=1.2•WDL_c+1.6•wsL_c=276 plf lspan_WC: 10.0•f t lspan_WC_cant'=3.0•f t Wwc=wutt_wc•(lspan_wc+Lspan_WC_cant)=3,6 kip VWC:= Wwc (0.5•(ispan_wc+lspan_wc_cant) lspan_wc_cant) -1.3 kip lspan_WC Mwc:=Vwc•6.6.ft=8.3 ft•kip (ok) (2) HSS 8 x 4 x 1/2 posts: worst-case is 15'tall * ultimate capacity per AISC column tables = 165k each * switch to HSS 8 x 4 x 1/4 for tall columns (98k cap. each) * use HSS 8 x 4 x 1/2 stub columns for resisting lateral load of canopy roof Durham WWTF Page 15 O&M - 2019 - Structural Project #19535 AAMODEO STRUCTURAL ENGINEERING AMODE❑ 503.804.9397 I rick@amodeose.com 1 amodeose.com 1 P.O.Box 83343 1 Portland,OR 97283 AIII Lateral Analysis: use the diaphragm and beams(as,drags and chords) to transfer all lateral to walls out-of-plane ... note that seismic will control ... look at the 13' tall walls (use 13.5'above footing) as solid-grouted Sys=0.679__ Ie:=1.25 Wwalas:=78,psf (medium weight) hwaAs:=13.5.•ft * Review wall capacity as stand-alone cantilever walls (do not consider roof): FP_ASD=0.7.0,40•Sd.'Ie•Wwaus=18.5 psf 2 =1689 ft•ibf Moor=0.5•Fp ASV'hwalls ft * 8" -.2,000psi solid-grouted cmu wall flexure review: Masonry Wall Strength (Pm) in psi: f'„z: 2000 psi Masonry Elastic Modulus (Em) in psi: Em:=900•f'.,,n=1800000.psi Masonry Flexural Strength (Fb) in psi: Fb:=0.45•f'.,,,,=900 psi Steel Elastic Modulus (Es) in psi: Es:=29000 ksi Steel Yield Strength (Fy) in psi: Fy:=60 ksi Steel Flexural Strength (Fs) in psi: .F8:=32000 psi Area of steel (As) in square inches:, As:=0.44 in2 (#6 verticals) Width of section (b) in inches: b:=24 in (@ 24" o.c.) Actual wall thickness (h) in inches: h:=7.625 in (8" nominal) Depth to steel (d) in inches: d:=0.5•h=3.81 in (at mid-depth of 8"wall) Es Modular ratio (n): n:= =16.11 Em Reinforcing Steel ratio A Coefficients (k and j): k:=(\(n•p)2 +2•n•p)—n•p=0.324 j:=1 - =0.892 3' Durham WWTF Page 16 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 AII MIL Wall: Masonry Flexural M„,:=0.5•F6•k•j•b•d2 =3778 ft•lbf Capacity (Mm): in foot-pounds Wall: Steel Flexural Capacity Ms:=F8•p•j•b•d2 =3991 ft•lbf (Ms): in foot-pounds Controlling Wall Masonry Flexural Meap:=rain(Mm„Ms)=3778 ft•lbf Capacity (Mcap): in foot-pounds Mcap ft•lbf Masonry Wall Flexural Capacity: (Mwaiicap): Mwo ap'= b _1889 ft in foot-pounds per foot ,Mwail,C'ap 1889 ft ft 1689'#/ft, therefore ok(has 12%.add! capacity) - t Lateral design notes: The 8" cmu walls can resist their OOP seismic load, but if a metal deck roof is added on top, then it also has to resist a lateral point load. Figure out what that load is, and then compare the stiffness of the HSS columns vs the walls OOP. Best solution is to take the lateral load of the flexible diaphragm into bending in the stub columns and transfer the load into the CMU walls in-plane, not OOP. Note that this is just a lightly loaded roof for an exterior storage area. Since this is such as odd structural layout, use a "belts and suspender" solution to provide redundancy and to minimize seismic event damage. Agaf:=(52.5•ft•30.0•ft)+87.3•ft2 =1662 ft2 Wsteeijraming'=4.31•kip+4.57r kip=8.9 kip DLRoof:=(ARao).•DLTyp)+Wsteet,framing=22.2_kip DLRoa f DLR.00f_Ave: =13.3 psf ARaaf DeckDLws'=52.5•ft•DLRoof Ave=700 pl f hdeck'=15.5•ft Fp_Deck_ASD:=0.7.0.40•Sds•Ie•DeckDLivs=166 pl f ( )=4269 ft•lbf - - MOOp_with_deck• OOP+ Fp Deck_ASD•hdeck ft Durham WWTF Page 17 O&M - 2019 - Structural Project #19535 • A AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 4111 * see what #7@16" will provide: • Area of steel (As) in square inches: As:=0.60 in2 (#7 verticals) Width of section (b) in inches: b:=16 in (@ 16" o.c.) Actual wall thickness (h) in inches: h:=7.625 in (8" nominal) Depth to steel (d) in inches: d:=0.5•h=3.81 in (at mid-depth of 8" wall) F Modular ratio (n): n:= 9 =16.11 E m Reinforcing Steel ratio (p): p:= b d 0.0098 Coefficients (k and j): k:=(\/ z(n•p) +2•n•p)—n•p=0.426 j:=1— =0.858 3 Wall: Masonry Flexural Mm:=0.5•Fb•k•j•b•d2 =3190 ft•lbf Capacity (Mm): in foot-pounds Wall: Steel Flexural Capacity M,:=F,•p•j•b•d2 =5233 ft•lbf (Ms): in foot-pounds Controlling Wall Masonry Flexural Mcap:=min(M,,,,M8)=3190 ft•lbf Capacity (Mcap): in foot-pounds Masonry.Wall Flexural.Capacity:.(MwallCap):_ Mt iGap:=M`ap =2393 ft•lbf in foot-pounds per foot b ft ft Mw, cap=2393 ftbf j < 4,269'#/ft, therefore no good - use in-plane shear design only for walls Lateral Update Notes: design walls free-standing with #6@24" o.c. (fc = 2,000psi) and design roof to transfer load to wall thru stub column bending. Design anchorage of the stub columns very robust (with omega forces) and design diaphragm to rotate with chords and drags. If the cmu walls were not there, the columns would resist lateral via flexure ... review with some level of bending (based on the relative stiffness of HSS column versus OOP on cmu walls). Durham WWTF Page 18 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING • ' AMODEO 503.804.9397 i rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 Calculation Revision - per architect, note that walls shall be concrete (4ksi) and not cmu!! Lateral Analysis: use the diaphragm and beams(as drags and chords) to transfer all lateral to walls out-of-plane ... note that seismic will control ... look at the 13' tall walls (use 13.5' above footing) as 8" thick(4ksi) with Ste:=0.679 Note: Revised again! See page #30 i :=1.25 for calculations for VE change to W, olls:=100•psf (8" concrete) CMU walls instead of concrete walls. hwalls:=13.5.ft * Review wall capacity as stand-alone cantilever walls(do not consider roof): Fp;=0.40•.Sci.,•Ie•Wwacls=34.0 psf M 0.5•F •h =3.09 ft•kip OOP_ult'— p• walla ft 4)b%=0.90. . _. cb,,:=.0.75. f',:=4.0•ksi fy:=60•.ksi_.. m:= fy =17.6.. _. 0.85•f, b:=.12•in t:=8•in d:=0.5.t=4 in As: 0.31•in2 =0.31 in2 (#5 @12" o.c) a:= fy•A As 8 =0.46 in p:= =0.0065 .85.f',•b b•d K:=.425•f,•(1—(1-m•p)2)=365 psi M p_1:=cbb•K•b•d2 =5.26 fi.kip > 3.09'k, therefore ok M p_2:=db•A,•fy•(d 2)-5.26 ft•kip > 3.09'k, therefore ok Add deck mass above (for information only) ... FP_Deek:=0.40•S,i,•Ie•DeckDL_rvs=238 pl f =6.78 ft•kip ** #5@9" o.c. would - -MOOP_with_deck` MOOP_ult+ Fp Deck•hdeckft - be adequate ... Durham WWTF Page 19 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING 1 AMODEO 503.804.9397 I rick©amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 Summary: * #5@14" o.c. verticals and #4@12" o.c. horizontals is adequate for OOP only * need #5@9" o.c. verticals and #4@12" o.c. horizontals for roof shear also * check roof diaphragm shear requirements (to be less conservative) * since walls do not need the roof diaphram for support, no anchorage req'mts * use the stub columns as cantilevered columns with the overstrength factor DeckDL NS=_700 plf DeckDL Ew:=(30.0•ft'DLPof_Ave)•1.055.1.123=474 plf (1.055 = additional deck ratio for NW deck pop-out) (1.123 = ratio for 00P wall length, since it is not continuous) ** North-South direction controls Concrete Wall Foundation: DLwall_max (8.8 f t•DLXaof_Ave�+�Wwaiis•hwols)=1467 plf • DLwau_min (3.3•ft•DLxnof_lve)+(Wwads•hwalis)=1394 plf DLwall_ave:=0.5•(DLwall max'+DLwall_min)=1431 plf SLwall_ave (6.1•f t•Snowmin)=168 plf * use a minimum of a 3' wide x 1' deep footing * 34.0psf > 32.1psf, therefore seismic controls on walls OOP * structure is open at all sides, so wind will blow through DL3xtjtg:=3.0•ft•1.0•ft•150•pcf=450 plf DLstab:=100•plf 0.6•iDL `•1,5•ft=1783 ft•lbf M R' \ woldave+DL3�l�ty+DLalab — ft M 0.7-M 2166 ft lbf > 1,783'#/ft therefore need larger ft9• ar:= ooPlt ft * try a 2' thick footing: DL3.5x2jtg:=3.5.ft•2.0•ft•.150•pcf=1050'plf 0.6. +DL fy+DL �• .75• t=2710 ft•lbf M R° wald_ave 3 5x2 t sla 1 b f ft * we need a 3.5' wide x 2' deep footing to resist OT (cantilever) Durham WWTF Page 20 O&M - 2019 - Structural Project #19535 A . AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 AW With the deck seismic,participating mass contribution: ft•lbf MOT-witle_deck:=0.7:•MOOp_with deck=4746 ft _.. . * try a 5'wide x 2.5' thick footing: DL5x2.5jt9:=5.0•ft•2.5•ft•150•pcf=1875 plf 2.5• t5109= ft•lbf MR:=0.6•(DLwall_ave+DL5x2.5_fty+DLslab) f ft * if we wanted to also resist the deck seismic participating mass with the wall cantilevering off of the foundation, then the footing would have to be 5' wide and 2.5' thick, instead of 3' w x 2' dp Seismic Lateral Loading: ASCE 7-16 chapter 12 - in-plane shear analysis Latitude 45.40"N, Longitude: 122.76"W S,,i,:=0.679 (seismic risk category III) Ie;=.1.25___ RsRGSw:=5.0 (SRCSW - bearing wall system) C9:= =0.17 (SRCSW) .C,_m=0.34 (cantilevered columns) RSRCSW I, Participating Mass = all roof mass + 50% of the steel column mass * note that the concrete walls stop short of the roof and cantilever off the fdn., therefore, there is no mass participation from the walls DLRoof=22.2 kip DLcols:='19.0•plf•43.0•ft=0.8 kip (HSS 8x4x1/4 cols) EDL;=DL3f+DLcols=23.0 kip VEQ:=C9•EDL=3.9 kip LEQ_oo:=C,c.,•EDL=7.8 kip LNs woos min:=13.25•ft (along grid 0) 0.5VEQ fv_NS:= y =0.1 klf _(min. steel for I-P shear is adequate) LNS Walls mnin LEw walls min=29.0•ft (along grid D) - 1.0•VEQ fv_EW:= =0.1 kif (min. steel for I-P shear is adequate) L - EWwalls min Durham WWTF Page 21 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODED 503.804.9397 I rick@amodeose.com I amodeose.com I P.Q. Box 83343 I Portland,OR 97283 Mr 0.5•VEQ f„_Ns: =0.3 klf (min. steel for I-P shear is adequate) LNS_walls_m$n 1.0•VEQ_cc fv EW:= =0.3 klf (min. steel for I-P shear is adequate) LEw_Waus_,a n * note: using the maximum Cs (for cantilevered columns), the in-plane shear in the cmu walls doubles, but is still well below the shearwall shear capacity J-ISS 8x4x1/4 columns and their foundations: * review the (4) stand-alone columns for gravity and combined loads Acol 215•ft2 DLppaf_Ave=13.3 psf Snowyltin=27.5 psf pwl:=Acol•(DLRoaf_Ave+SnowMtin)=8.8 kip 4 • 40rav:=1.5•ksf 41at =3 497, kV av=2.0 k Aft9_,.egd:= P`ol_=5.9.ft 2 < 16.0 sq. ft., therefore additional capacity for lateral 4grav * use a 4' x 4' x 18" thick footing (larger to resist lateral OT moment) * note that lateral load is resisted by cmu walls, but review diaphragm deflection and determine lateral load(and OT moment) for design *strength and stability using ASD os based on 0.6DL and 0.7EQ DLHSS8x4°_(hdeck-0.5•f t) •19.0•pl f=0.3 kip 2 DL4x4,ftg.:=(4.0eft) •1.5•ft•150•pcf=3.6 kip ' DLHSSsx4'=(A, 1•DLRoaf tve>+DLHSS8x4+DL4x4 ftg=6.8 kip MR Hss8x4:=0.6•EDLHsssx4 2.0-f t=8.1 ft•kip MR_HSS8x4 =7721bf QE_maa 0.7•(R 0.5• t) deck— f Durham WWTF Page 22 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING • AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 AIII MIL C, ,, _,.Qof`— QE-„wc =0.27 > 0.17, therefore ok ... footing can be smaller A„i•DLRoof_Ave Review of roof deck diaphragm strength and deflection: * 1.5" deep - 18 gage - type B roof deck * span = 8.25' * use VSC (Verco sidelap connection) @ 12" o.c. * per Verco, q = 1,333 plf, therefore ok by inspection * per Verco, F = 6.08 + 2R DeckDL Ns=700 plf DeckDL EW=474 plf •0.40•S� Ie•DeckDL NS=166 plf FPx_deck_lsD_Ns'=0.7 FPX_deck_ASD_EW'=0.7.0.40•Sds•le•DeckDL EW=113 pif VNSrid_o'=Fpx_deck_.vsD Ns•17.5•f t=2.9 kip VNS_grid_4'=Fpx_deck_4SD_NS•19.0•f t=3.2 kip VEw d_D°-Fpx_deck_ASD S•52.5•ft=8.7 kip VNs_gr/ l fv vs_grid_oplf< 1=213 If, therefore ok := 13.7•f t 333P VNS_grid_4 fv Ns�zd_4:= =94 plf< 1,333pIf, therefore ok 33.6•ft VEW-grid_D f_EWE a D::= 300',plf< 1,333pIf, therefore ok 29.1•ft ** Require 350p1f shear capacity for all roof decks ** R = 1/3 for 3-span deck Rdeck== 3 F'deck'=6.08+2.Rdeek=6.75 1000 C.— =148.2 F'deck Durham WWTF Page 23 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AmorE❑ 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland AV IM North-South Direction: Fpy deckASD_N3=166 plf Achord min: 4.48•in2 (C10x15..3 as a minimum) ddepth_NS:=52.5•ft ... .'diaphragm NS'=Achord_-rain.•(0.5.•.ddepth NS) =444528 in4. Ldiaphragm NS'=24.8•ft Edeck.:=.29500.•ksi 4 5•Fpy deckASD_NS'Ldiaphragm NS _0.000 in dBendingNS 384•E I deck• diaphragm_NS Fpx_deck A5DNS•f t••Ldiaphragm NS2 4Shear_NS 45320•d •ibf —0.003 in depth NS•G' DNS°=QBending NS+QShearNS 0.004.in * neglibable diaphragm deflection in the N/S direction East-West Direction: Fpy deck_ASD_Ew=113 pif Achord man: 4.48•in2 (C10x15.3 as a.minimum) ddepth_EW':=30.0•ft 2 'diaphragm_EW:=Achord_min•(0.5•'ddepth EW) =145152 in4 Ldiaphragm_EW:=49.0-ft Edeck:=29500•ksi 9.6.5•Fpy deek_ASD EW•Ldiaphragm_EW 4 i �BendingJEW:= 3o4 -0.033n •E I deck' diaphragm_EW Fpxdeck ASD EW•ft•Ldiaphragm EW'2 LI Shear_EW:— •d G'•lb =0.016 2n 45320 depth_EW• • f Durham WWTF Page 24 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com ( P.O.Box 83343 I Portland,OR 97283 : Ew:=ABendting_EW+LISliear Ew=0.049 in (convert to a force) IHSS8x4xO.25 =42.5•in4 (major axis controls) MR_HSS8x4 QE_maxo_sd:_ =540 lbf (hdeck—0.5•f t) 48•Qom,.•Es•I HSSSx4x0.25 Horfar,, = ? =449 lbf < 540#, therefore ok (hdeck) Af;at_de,gn:=1.4•Hor force•haeck=9.8 ft•kip EDLHsssx4=6.8 kip Puit_cat:=0.9'•EDLHsssx4=6.1 kip * design anchorage for 9.8'k of ult. OT and 6.1k of ult. shear MOT:=0.7•Milt_desdgn=81.9 in•kip P:=EDLHsssx4=6.8 kip a * check the 4'x4'x18" thick footing A (4. • S _ (4.0•ft) _10.7 f t3 fe9,_ 0•ft)1 ft9: 6 MOTMOT P =422 psf =640 psf ecc:= =1.01 ft A ft9 S fty 2•P <1=1138 spf500 p sf. therefore ok p.`,a'= 3•(2.0.ft—ecc)•4.0.ft M„r,:=0.9.46.0•ksi•13.36•in3 =46.1 ft•kip > 9.8'k, therefore ok * HSS8x4x1/4 is adequate in combined bendings + axial load Baseplate and Anchor Bolts: try a 12" sq. x 5/8" baseplate with (4) AB's at 8" o.c.e.w. Vt A8:=1.4•Hari orce=629lbf Mu AB:=Mult_destgra=117 in'kip Tu_na:_ MU =6.2 kip 2.9.5•in Durham WWTF Page 25 O&M - 2019 - Structural Project #19535 AAMODEO STRUCTURAL ENGINEERING AMODEo 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 :=2.0•in•2•TU Aa=24.6 in.kip MU n¢septate 2 * trya 0.625" thick base late: Z _ 12•in•(0.625•in) =1.2 in 3 p BasePtate'- 4 (043._sasePlate'-0.9•Fp_gaseplate•ZBasePlate=38.0 in!kip >_24.6'k, therefore ok 2 (8•in) Welding to BasePlate: Swcldr ajar:=(4•in•8•in)+ =53.3 in2 3 2 S (4•in•8•in)+ (4•zn) =37.3 in2 wetd mirror'- 3 MU_6aseplate kip vult_wetd'= 0 -0.7 Sweld minor _ 2n. * provide a 1/4" fillet weld for strength and stiffness TU Ae=6.2 kip tcap aisc:=0.75•0.75 58.0•ksi•0.442•in2 =14.4 kip > 6.2k, therefore ok tcap aci:=0.75.58.0.•ksi•0.334-,in2 =14.5 kip > 6.2k, therefore.ok Design of Roof Lateral System to transfer loads to Concrete Walls: * use the seismic shear calculated by using the cantilevered column system * compare to the diaphragm shear at each line and use an envelope solution * all loads are in ultimate VEQ_cc'=Cs_cc•ZDL=7.8 kip _. VNs_grid_o: Fpx_deck_ASD NS•17.5•f t=2.9 kip Vgrid_o:='0.5•VEQ cc=3.9 kip VNS_grid_i:=Fpy_deek_ASD NS•19.0.f t=3.2 kip VO,.id 4:=0.5•VEQcc=3.9 kip VEw_grid D'=Fpx_deck ASD_NS•52.5•ft=8.7 kip V_,•id D:=1.0•VEQ e,=7.8 kip ReentrantCornerRatio:=3.66• ft =0.14 < 15%, therefore not considered a 26.75•ft discontinuity, but use 1.25 factor anyhow Durham WWTF Page 26 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O.Box 83343 I Portland,OR 97283 AV 11Ik Note: even though this is a single story, the lateral system is irregular, so overstrength of 1.25 will be used for chords and collectors. North-South Direction: Fpx_deck_ASD_NS=_166 plf Achord man:=4.48•in2 (C10x15.3 as a minimum) dchordNs'=52.5•f t dchardEW:=30.0•f t Ldiaphragm_NS:=24.8•f t 1.25•FPx deck ASDNS•Ldiaphragm NS Fehord ASD:— —0.3 kip 8•dchord NS Fehord_ASU _0. s (ok inspection) foxiod_chord:= — 1 ki k byi ( P Achord_man East-West Direction: Fpx deck_ASD_EW=113 plf Achord_min:=4.48•in2 ; (C10x15.3 as a minimum) Ldaaphragm E[d%:=.49.0•f t 1.25•Fpx deck ASD EVV•Ldiaphragm_EW 2 Fchord_ASD:= =3.2 kip 2•dchord NS F'chord ASD _D.7 ksi (ok faaaal_chard°_ — by inspection) Achord min ** Note: confirm all chord connections can resist 3.2k seismic T/C loading (ASD) ** Controlling case is: D + 0.75E + 0.75S E:=0.75,3.2•kip=2.4 kip D:=1.0•kip S:=0.75.1.9•kip=1.4 kip I 2 Resultant:= E2 +(D+S) =3.4 kip ** (2) 5/8" dia. A307 bolts in J double shear are good for 2 x 6.1k = 12.2k,therefore ok Durham WWTF Page 27 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com P.O.Box 83343 I Portland,OR 97283 North-South Lateral: * maximum ultimate shear = 3.9k * use omega = 1.25 * divide by the minimum # of cantilevered stub columns = 2 1.25.3.9•kip Frvs_stub:= 2 =2.4 kip East-West Lateral: * maximum ultimate shear = 8.7k * use omega = 1.25 * divide by the minimum# of cantilevered stub columns = 3 1.25.8.7•kip ,, FNS_stub:= 3 =3.6 kip * Design Stub Columns for 3.6k ultimate at 2.5' cantilever Mwt_post:=3.6•kip.•2.5•ft=9.0 ft-kip • Ptdt post'=277-ft2 •((1.2.13.3•psf)+(0.2.27.5 psf))=5.9 kip Peap:=206•kip Axial_Ratio:=Puti_post =0.03 * therefore, as required for cantilevered Pcap columns,and also for combined axial + flexure design, ratio < 15% Map:=26.7.ft•kip > 9.0'k,therefore ok on minor axis Mult_post kip vult_wetd°_ =2.9 swell minor in * weld capacity = 1.392 x 4 = 5.6k/in > 2.9k/in,therefore ok * Design Connection to wall using: Axial = 5.9k and Moment = 9.0'k T 9.0•ft•kip =7.2'ki * use a phi factor of 0.75 and ult_DEA�= 3-5-in p not 0 90, due to seismic forces * Try a #5 DBA x 60ksi: Tcap:=0.75.60.0•ksi•0.31•in2,=14.0 kip > 7.2k, therefore ok Durham WWTF Page 28 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 IIL Note: based on Hilti Profis results, DBA's could be switched to 3/4" dia. (#6 bars) Tcap:=0.75.60.0•ksi•0.44.ink =19.8 kip (unnecessary to do) *review ACI 318-14 chapter 17 - Anchoring to Concrete -to check concrete breakout: csrc=0.34 DLRoof:_('`1Raof•DLTyn)+Wste'l j'ramM9=22.2 kip VRoof =Cs m•DLRnof=7.5 kip 1.25.7.5'kip F1,,,ax_et„b:= 3 3.1 kip(actual design force) * Note that we.have (4) oriented in the minor axis and (3) in the major axis- but all loads are only resisted in-plane on the concrete walls ... ttyost:=F,eta,-anw•2.5•ft=7.8 ft•kip Putt_post=5.9 kip Vialt_post:=F Max_stub=3.1 kip Mutt_post Tutt_DBA:= 3.5•in —6.3 kip Review (3) critical failure modes: * Concrete breakout strength in tension * Concrete side-face blowout strength in tension (no side face, except at corner) * Concrete breakout strength in shear * Note that supplemental reinforcement is provided to prevent breakout * Provide adequate tension development of#5 DBA's Ludt 60000 1d_req'd:_ •0.625•in=10.6 in. (0.75.60 ksi•.31•in' 25 V4000 * without the reduction factor, req'd development = 24", therefore just leave it as 26" as currently shown in the detail * add additional supplemental horizontal bars at corner condition and extend verticals to lap with wall bars Durham WWTF Page 29 O&M - 2019 - Structural Project #19535 • A AMODEO STRUCTURAL ENGINEERING AMDDED 503,804.9397 I rick@amodeose.com I amodeose.com I P.Q. Box 83343 I Portland,OR 97283 Redesign of Structure at 11th hour ... concrete walls were VE'd to CMU walls to save $: * Verify/update design of CMU walls for OOP cantilevering * Add CMU pilasters (not for global strength) for good connections at stub columns *Revised detail at foundation to include concrete curbs * Update the (3) concrete wall details to convert to CMU (details 7, 14 and 15) * Masonry shall be laid in a running bond, * CMU shall be 2,000psi and shall be fully-grouted with full pilaster blocks * Use #6 @ 24" o.c. at centerline of wall * Use (4) #6 verticals w/ #3 ties at 8" o.c. in pilasters Wcmu walls:=78•psf DL u_watl mo '=(8.8•ft•DLRoof_Ave)+ (IV cmu waEGs "walls)=1170 plf DLc„u_wall_min:.(3.3.ft•DLRoof_Ave) MU walls'hwadds)=1097 pl f DLcmu_watl_ave:=0.5• �DL u_wattr uix+.DL mu walE rn ze>=1134 plf Fp:=0.40•Sds•-le•Wemu_vans=26.5 psf M 0.5•F •h s =2413 ft•lbf OOPult°_ p• walls ft DL3si_fts:=3.0•ft•1.0•ft•150-pd.450 plf DLstab'=100•plf t=1515 ft•lbf MR;=0.6•(DLemu_wald_ave+DL�1�q+DLsEab) 1.5•f ft M 0.7M 1689 ft.lbf > 1,515'#/ft, larger therefore need MOT:— • OOP_uEt ft ftg. * try a 2'thick footing: DL3.5m2jt :=3.5.ft•2.0.ft•150•pef=1050 plf M • D + ft•lbf R°_0.6 � L emu_wald_av DLe 3 5a2�t�+DLst�>•1.75•ft=2398 ft * we need a 3.5' wide x 2' deep footing to resist OT (cantilever) - soil pressure ok Look at Pilaster load and eccentricity at foundation: * Wall DL + Footing DL = 16.5k at centerline (8' width) * Roof TL = 11.3k at 8" eccentricity * Sum of TL = 27.8k at 3.25"eccentricity * P/A = 1.Oksf and M/S = 0.46ksf, therefore within kern, therefore ok * Maximum soil-bearing pressure = 1.46ksf < 1.50ksf, therefore ok Durham WWTF Page 30 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 Note: This is a revision Seismic Lateral Loading: ASCE 7-16 chapter 12 - in-plane shear analysis to switch lateral system to Special Masonry Latitude 45.40°N,_Longitude: 122.76°W _ _ Sa,:=0.679 Bearing Walls w/ R=3.5 (seismic risk category III) I.,:=1.25 RSRCSW:=3.5 (SRMSW - bearing wall system) Cs:— S =0.24_.(SRCSW)_ _ C „=0.34_ (cantilevered columns) RSRCSW Ie _ Participating Mass = all roof mass + 50°/0 of the steel column mass * note that the masonry walls stop short of the roof and cantilever off the fdn., therefore, there is no mass participation from the walls DLROof=22.2 kip DLCols:=19.0•pif•43.0•ft=0.8 kip (HSS 8x4x1/4 cols) )2DL:=DLRoo f+DLCai9=23.0 kip VEQ=C3•EDL=5.6 kip VEQ_Ce:=C9_c•EDL=7.8 kip LNs walls min:=13.25•ft (along grid 0) 0.5•VEQ fv Ns =0.2 kif (min. steel for I-P shear is adequate) LNS Wails min LEii,waits min:=29.0•ft (along grid D) 1.0•VEQ f„_EW:= =0.2 klf (min. steel for I-P shear is adequate) LEW_Wolis_min 0.5•VEQ f:, Ns:= =0.3 klf (min. steel for I-P shear is adequate) T 1.0•VEQ ,, f Ew:= =0.3 klf (min. steel for I-P shear is adequate) LEW_Wolls_min. * note: using the maximum Cs (for cantilevered columns), the in-plane shear in the cmu walls doubles, but is still well below the shearwall shear capacity Durham WWTF Page 31 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING A ODE= 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 HSS 8x4x1/4 columns and their foundations: * review the (4) stand-alone columns for gravity and combined loads Awl:=215•ft 2 . DLRoofave=13.3 psf SnawMxn=27.5 psf Pcol°_``lcod'(DLRaofAve+Sm whMin);=8.8 kip 4 (brag°—1.5.ksf that:=— •(grav 2.0 ksf Aftg Qydc= pia =5.9 ft2 < 16.0 sq. ft., therefore additional capacity for lateral (gray * use a 4' x 4' x 18" thick footing (larger to resist lateral OT moment) * note that lateral load is resisted by cmu walls,but review diaphragm deflection and determine lateral load (and OT moment) for design * strength and stability using ASD os based on 0.6DL and 0.7EQ DLHSS8x4:_(hdeck—0.5•f t)•19.0•plf=0.3 kip 2 DL4x4_ftg:=(4.0•ft) •1.5•ft•150•pcf=3.6 kip ZDLHSS8x4:=('(cod•DLRoof_Ave)+DLHSS8x4+DL4x4;ftg=6.8 kip MR HSS8x4'=0.6•EDLHss8x4.•2.0•f t=8.1 ft•kzp MR_Hss8x4 =772 lb f QE-"°z - 0.7.(h . • t) deck—05 f C9, mof_= QE_max =0.27 > 0.17, therefore ok ... footing can be smaller `(col'DLRoof_Ave Review of roof deck diaphragm strength and deflection: * 1.5" deep - 18 gage - type B roof deck * span = 8.25' * use VSC (Verco sidelap connection) @ 12" o.c. * per Verco, q = 1,333 plf, therefore ok by inspection * per Verco, F = 6.08 + 2R DeckDL Ns=700 pl f DeckDL EW=474 plf Durham WWTF Page 32 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING A DDED 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 MIL I _deck Asr�_Ns 0.7.0.40•S, •Ie•DeckDL S=166 pi f Fpa_deck_ASD_EW:=0.7.0.40•Sds•Ie•DeckDL_EW=113 plf Vrvs�rid_o`=Fpx_deck ASD_Ns•17.5•f t=2.9 kip vrvs�rid_a Fp¢_deck_ASD_NS•19.0•f t=3.2 kip V _gridD:=Fpa_deck_ASD_NS•52.5•f t=8.7 kip fv Ns_grid_o:= =213 pif< 1,333p1f, therefore ok 13.7•ft VNsarida =94 < 1 333 If therefore ok .fv rJsqrid_4:= 33.6•f t plfp _ VEw�rid D =300 pl < 1,333p1f, therefore ok f EW�rxdD 29.1•ft f **. Require 350p1f shear capacity for all roof decks ** R = 1/3 for 3-span deck 1 _6.75 Rdeck:= 3 Fdeck: 6.O8+2eRdec —k 1000 G':= =148.2 Fdee, North-South Direction: FP deck_ASD'NS=166 pif '4chord min:=4.48•in2 (C10x15.3 as a minimum) ddepth_Ns'=52.5i•f t 2 Idiaphragra_NS:=Achord_min.•(0.5-ddepth_NS)... =444528 in Ldiaphragm_rvs:=24.8•f t Edeck:=29500•ksi Durham WWTF Page 33 O&M - 2019 - Structural Project #19535 AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com amodeose.com I P.O.Box 83343 I Portland,OR 87283 Ally 5•Fpx_deck ASD NS•Ldiaphra1rn_NS ABending NS'— =0.000 in 384•Edeck•I tiaphragrn_NS Fpxdeck ASD_NS•ft•Ldiaphrapnn NS 2 aShear_NS:= in 45320•daepti rrvS G •tbf =0.003, ANS:=4Bendiny_NS+AShear_NS=0.004 in * neglibable diaphragm deflection in the N/S direction East-West Direction: Fpx_deck_ASD_EW=113 plf Aehord min:=4.48•in2 (C10x15.3 as a minimum) ddepth_EW 9 30.0•ft 2 Zdiaphragnn_EW:=Achord_min•(0.5•.ddepth_Ew). —145152.in". Ldzaphragm_ET:=49..0•ft Edeck:=29500•ksi 9.6•5•Fpx_deekl9SDEW•Ldiaphragm_EW4 ' Bending_EW'= =0.033 in 384•Edeck•Idiaphragm_EW Fpx_deck_ASDEW••f t.••Ldiaphragm EW 2 A -0.016 in 45320•ddcpthEW•G'•l bf AFW:=ABending_EW+°shear Ew=0.049 in (convert to a force) IHSS8x4x0:25:=42.5•in4 (major axis controls) MR HSSBxa =540 lbf Q :=E_ ax_asd - mn (Edeck—0.5.ft) 48•QEW•Es•IHSS8x4x0.25 HorforCe.— 449 lbf < 540#, therefore ok (hdeck)3 Durham WWTF Page 34 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMODEO 503.804.9397 I rick@amodeose.com amodeose.com P.O. Box 83343 Portland,OR 97283 S MIL MuIt_destyn'-1.4•Hor force•hdeck=9.8 f t•kip EDLass8l4=6.8 kip PuIr, cal:=0.9.5 DLass8X4=6.1 kip * design anchorage for 9.8'k of ult. OT and 6.1k of ult. shear MOT:=0.7•Mult_deeiyn=81.9 inl•kip P:=EDLBsssx4=6.8 kip 3 * check the 4'x4'x18"thick footing Afty:-(4.0•ft) Sfty:= =10.7 z (4.0•ft) ft3 6 P =422 psf MOT 640 psf ecc:=MOT =1.01 ft Afty Sfty P 2•P psoll:= =1138 psf <1,500psf, therefore ok 3•(2.0•ft—ecc)•4.0'•ft' Map:=0.9.46.0•ksi•.13.36:•in3 =46.1 ft•kip > 9.8'k, therefore ok * HSS8x4x1/4 is adequate in combined bendings + axial load Baseplate and Anchor Bolts: try a 12" sq. x 5/8" baseplate with (4) AB's at 8" o.c.e.w. VU ,=1.4-Hor fore,=629 lbf MULAB:-Mult_desiyn=117 in•kip Tu AB:= MUAB =6.2 kip 2.9.5-in MU_baseplate:=2.0•in•2•TU_AB=24.6 in.kip 2 12•in•(0.625.in) * try a 0.625"thick baseplate: ZBasePlate:= =1.2 in3 4 `VMn_BasePlate'=0•9•FV_BasePlate•ZHasePlaiz=38.0 in•kip > 24.6'k, therefore ok Durham WWTF Page 35 O&M - 2019 - Structural Project #19535 AAMODEO STRUCTURAL ENGINEERING A❑DE= 503.804.9397 I rick@amodeose.com 1 amodeose.com I P.O. Box 83343 I Portland,OR 97283 AIIII Weldingto BasePlate: S :=(4.i 8• 3 in)+ (8 in) =53.3 in we(d_major'— n• 2 (4•in) Sweld_minor:=(4•in•8•in)+ =37.3 in2 3 MU_baseplate kip vvlt_weid:_ =0.7 Sweld minor in * provide a 1/4" fillet weld for strength and stiffness Tu AE=6.2 kip te,,,p_aisc;=0.75.0.75 58.0•ksi•0.442•in2 =14.4 kip > 6.2k, therefore ok tip :=0.75.58.0•ksi•0.334•ink =14.5 kip > 6.2k, therefore ok Design of Roof Lateral System to transfer loads to Concrete Walls: * use the seismic shear calculated by using the cantilevered column system * compare to the diaphragm shear at each line and use an envelope solution * all loads are in ultimate VEQ =Cs-cc•EDL=7.8 kip VN5 ,..d_0:=r'px_deck_ASDNS•17.5•f t 2.9 kip VV,dd_p:=0.5.•VEe_,„=3.9 kip VNS_grid_4:=Fpx_deck_ASD NS•19.0•f t=3.2 kip V9,;d_4:=0.5.VEQ_ce=3.9 kip VE7_gridD:=Fpx_deck_LSDNS•52.5•ft=8.7 kip Vy,,id_a:=1.0•VEQ_,c=7.8 kip ReentrantCorrlerRatio:=3.66• f t =0.14 < 15%, therefore not considered a 26.75•ft discontinuity, but use 1.25 factor anyhow Note: even though this is a single story, the lateral system is irregular, so overstrength of 1.25 will be used for chords and collectors. Durham WWTF Page 36 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMODEO ❑DE= 503.804.9397 I rick@amodeose.com J amodeose.com I P.O. Box 83343 I Portland,OR 97283 North-South Direction: Fpx_deckASDNS=166_pif Ach,,d ,a,a:=4,48•in' (C10x15.3 as a minimum) dchardNS;:=52.5•ft deaaTaEw:=30.0•ft Ldiaphragm_NS:=..24.8•.ft 1.25•Fpx deck ASD NS•Ldeaphragm NS2 F'chord_ASD.- —0.3 kip 8•dchord NS Fcfwr&ASD =0.1 ksi ok byins ection faxiai_chord�_ ( inspection) Achord min East-West Direction: Fpx_deck_ASDw.=113 plf Achord min:=4.48•in2 (C10x15.3 as a minimum) Ldiaphragm_E ;:=49.0•ft 1.25•Fpx_deck ASD EW•Ldiaphragm_EW2 Fchard ASD. =3.2 kip '.. 2•dchord NS FchardASD j'ax2aE_CYLOTd:= =0.7 ksi ok byinspection) J . ) A ( Pchord min ** Note: confirm all chord connections can resist 3.2k seismic T/C loading (ASD) ** Controlling case is: D + 0.75E + 0.75S E:=0.75.3.2•kip=24 kip D:=1.0•kip S:=0.75.1.9.kip=1.4 kip 2 Resultant:=\IE2 +(D+S) =3.4 kip ** (2) 5/8" dia. A307 bolts in double shear are good for 2 x 6.1k = 12.2k, therefore ok Durham WWTF Page 37 O&M - 2019 - Structural Project #19535 AAMODEO STRUCTURAL ENGINEERING AMODEO ODE= 503.804.9397 I rick@amodeose.com I amodeose.com P.O. Box 83343 I Portland,OR 97283 North-South Lateral: * maximum ultimate shear = 3.9k * use omega = 1.25 *divide by the minimum # of cantilevered stub columns = 2 1.25.3.9•kip FNs_stub:= 2 2.4 kip East-West Lateral: * maximum ultimate shear = 8.7k * use omega = 1.25 * divide by the minimum # of cantilevered stub columns = 3 1.25.8.7.kip FNSstub:= 3 =3.6 kip * Design Stub Columns for 3.6k ultimate at 2.5' cantilever Multyost i3.6•kip•2.5.ft=9.0 ft,•kip PuZt�ost'=277•ft2.•((1.2.13.3•psf).+.(0.2.27.5 psf))=5.9 kip P p:=206•kip Axial_Ratio:=P lt_poet =0.03 * therefore, as required for cantilevered Peap columns, and also for combined axial + flexure design, ratio < 15% MAP:=26.7•ft.•kip > 9.0'k, therefore ok on minor axis Mult_post kip vult_weld°_ =2.9 'sweld_minor i7L * weld capacity = 1.392 x 4 = 5.6k/in > 2.9k/in, therefore ok * Design Connection to wall using: Axial = 5.9k and Moment = 9.0'k Tult DBA`= 9.0•ft•kip =7 2 kip * use a phi factor of 0.75 and 3.5•in not 090, due to seismic forces * Try a #5 DBA x 60ksi: TC6p:=0.75.60.0•ksi•0.31•in2=14.0 kip > 72k, therefore ok Durham WWTF Page 38 O&M - 2019 - Structural Project #19535 A AMODEO STRUCTURAL ENGINEERING AMODEO DDEO 503.804.9397 I rick@amodeose.com amodeose.com I P.O.Box 83343 I Portland,OR 97283 1111. Note: based on Hilti Profis results, DBA's could be switched to 3/4" dia. (#6 bars) Toup:=0.75.60.0•ksi•0.44•in2 =19.8 kip (unnecessary to do) * review ACI 318-14 chapter.17 -Anchoring to Concrete -to,check concrete breakout: Cscb=0.34 DLL f`=(` o f•DLTyy)+wsteetjraming=22.2 kip Vpf=C8_„•DLff=7.5 kip F 1.25 7.5•kip =3.1'ki actual design force) * Note that we have (4) oriented in the minor axis and (3) in the major axis - but all loads are only resisted in-plane on the concrete walls ... Muit_pnst=FMrzxstub•2.5•ft=7.8 ft•kip Pultpost=5.9 kip Vutt post:=FMom_stub=3.1 kip Mutt_post Tutt_DBA 3.5•in —6.3 kip Notes_about switching to Masonry: *R increases but IP shear is still far below wall capacities, therefore ok by inspection * Review anchorage using the ACI 318 and ACI 530 and fm = 2,000psi * Use allowable stress design - chapter 3 0.7•Multyost 0.7•Vutt_post Tosd_DBA:= 2.8•in =4102 lbf Vosd_DBA 4 =547 lbf fy:=60•ksi f'm:=2500•psi (use grout strength) db:=0.75•in Check development length of 3/4" dia. DBA's: 0.13•db2 •Fy id:— ' 24.2 in (call out 28" to develop) 3.625•in•\Jf'm•psi Durham WWTF Page 39 O&M - 2019 - Structural Project #19535 ' A AMODEO STRUCTURAL ENGINEERING AMODE❑ 503.804.9397 I rick@amodeose.com I amodeose.com I P.O. Box 83343 I Portland,OR 97283 /I MIL ( 12 2 Ab:=a,l 2bJ =0.44 in2 lbe_ave'=6.0•in, Ate,:= �•lb2_ave =57 ink 1b:=4.0•in Apt:=ir•lb2_=50.3 in2 Shear.Review:_ BQ,b:=.1.25.Apv•\J An.psi=3534 ibf Bve:=.350.1\If'm•Ab•lbf3 =2018 lbf (critical = masonry crushing) Bvrmy;=2.5•Apt•\f;,,•psi=6283lbf Bvs:=0.36•Ab•fy=9543 lbf ShearRatio:= Vasil DaA =0.27 Bay Tension Review: Bab;=1.25•Apt•\r f'm•psi=3142 lbf ... excessively conservative ... review top of wall situation BV3:=0.60•Ab•41=15904 lbf t:=16•in 2 Apt_adjasted:=0.25•((16•in) +(8.0•in•14.0•in))=92 in2 (at top of wall) Bab_adjusted' 1.25•Apt_adjastea• V f',a•psi=5750 lbf TensionRatio:= T°sd DSA =0.71 Bab_adjv�ted B:=ShearRatio+TensionRatio=0.98 < 1.0, therefore ok Design Note: this anchor bolt analysis is approximate as it considers this a short headed stud, when it is actually developed down in the wall and laps with pilaster vertical reinforcing. In addition,the pier is tied up with #3 hoops at 4"o.c., therefore the shear review was also conservative Durham WWTF Page 40 O&M - 2019 - Structural Project #19535 . . ASCE ASCE 7 Hazards Report AMEICAN SOCIETY OF CIVIL ENGINEERS Address: Standard: ASCE/SEI 7-16 Elevation: 157.04 ft (NAVD 88) No Address at This Risk Category: III Latitude: 45.400345 Location Soil Class: D - Default (see Longitude: -122.762114 Section 11.4.3) - 1•a3-- __,t. ' VI 6 II ,' er\�ri^: Iff�"x . . ..... let F4c i` rv.;ii[,>rc .i:i ii F• Ftlani 1 ..^. ' -.� ���� �`., 1. I �'.� I rl[•I � Se - r. q r t ! rham r rt:..• https:l/asce7hazardtool.online/ Page 1 of 3 Fri Feb 28 2020 ASCE. AMERICAN SOCIETY OF CIVIL ENGINEERS Seismic Site Soil Class: D - Default (see Section 11.4.3) - Results: Ss : 0.849 SDI : N/A Si : 0.39 TL : 16 Fa : 1.2 PGA : 0.386 F, : N/A PGA M : 0.469 SMS : 1.019 FPGA . 1.214 SM, : N/A le : 1.25 SOS : 0.679 C„ : 1.224 Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8. Data Accessed: Fri Feb 28 2020 Date Source: USGS Seismic Design Maps httos://asce7hazardtool.online/ Page 2 of 3 Fri Feb 28 2020 ASCE. AMERICAN SOCIETY OF CIVIL ENGINEERS The ASCE 7 Hazard Tool is provided for your convenience,for informational purposes only,and is provided"as is"and without warranties of any kind.The location data included herein has been obtained from information developed,produced,and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard.While ASCE has made every effort to use data obtained from reliable sources or methodologies,ASCE does not make any representations or warranties as to the accuracy,completeness, reliability, currency,or quality of any data provided herein.Any third-party links provided by this Tool should not be construed as an endorsement, affiliation,relationship,or sponsorship of such third-party content by or from ASCE. ASCE does not intend,nor should anyone interpret,the results provided by this Tool to replace the sound judgment of a competent professional,having knowledge and experience in the appropriate field(s)of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard. In using this Tool,you expressly assume all risks associated with your use.Under no circumstances shall ASCE or its officers,directors, employees,members,affiliates,or agents be liable to you or any other person for any direct,indirect,special,incidental,or consequential damages arising from or related to your use of,or reliance on,the Tool or any information obtained therein.To the fullest extent permitted by law,you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool. httos://asce7hazardtool.online/ Page 3 of 3 Fri Feb 28 2020 Mini-V-BeamTM Roof and Wall AAEPN Painted side Mini-V-Beam is an exposed- fastened metal panel with 32" net coverage. LapDe1a1 Mini-V-Beam is ideal for roof, vertical or horizontal wall applications, open framed 4' canopy or carport designs. Twi I<-'Vs„ 32" Net Coverage Properties Standard Finishes Gau a Base Steel Yield Tensile Wt. I+ S+ 1- S- Metallic g Thickness (in) (ksi) (ksi) (Ibs/ft') (in'lft) (in'/ft) (in4/ft) (in'Ift) Coating Paint System 26 0.0173 80 82 0.92 0.0708 0.0921 0.0705 0.0876 AZ50 Cool Dura Tech" nt 24 0.0232 50 65 1.23 0.0956 0.1307 0.0956 0.1286 AZ50 Cool Dura Tech" 5000 22 0.0294 50 65 1.56 0.1200 0.1665 0.1200 0.1668 AZ50 (polyvinylidene fluoride) or 20 0.0354 40 55 1.88 0.1463 0.2000 0.1463 0.2000 G90 Dura Tech"mx 18 0.0459 40 55 2.43 0.1913 0.2573 0.1913 0.2573 G90 (metallic polyvinylidene) NOTES: The moments of inertia,I'and I,presented tor determining deflection are:(2IEe,,Ve*Ic"ss0/3 standard features optional features • Minimum recommended slope 1:12. ■ Short cut sheets from 5'-0"to 1'-0". Additional fees and lead times apply. • Gauges: 22ga, 24ga, 26ga and 29ga in standard finishes and 20ga available in ZINCALUME®Plus. ■ 20ga and 18ga available in galvanized G90 with standard and custom colors subject to a minimum order • Refer to AEP Span Color Charts for full range of color size of 4,500 square feet and longer lead times. options and paint systems. ■ 18ga available in bare galvanized G90 subject to a NI manufactured panel lengths: 5'-0"to 45'-0". minimum order size of 18,000 square feet and longer lead times. • Matching fiberglass panels available. ■ Custom colors, thick film primer and/or clear coat paint III ASTM E1680 (air infiltration) and ASTM E1646 finishes available. Subject to 4,500 square feet minimum (water infiltration). All testing performed by accredited order. third-party. ■ Perforation options available for an additional charge. Minimum order size 1,335 square feet • Roof assemblies Class A Fire Rated when installed (Inquire for smaller orders). Select from standard on non-combustible deck or framing per IBC or IRC or perforation patterns with open areas of 7.8%, when installed in accordance to UL listings (UL790). 13.8%, 23.4% or 30.6%. Wall assemblies rated for fire resistance (UL263)when ■ Stucco embossed available in 26ga, 24ga and 22ga. installed in accordance with UL listings. Subject to minimum order size of 1,335 square feet. • Building Code Approval Report: 1.4 IAPMO-UES /ER-0550. • Manufactured in Tacoma, WA. Customer Service Center For most current versions of literature please visit Tacoma, WA Phone: 800-733-4955 Fax: 253-272-0791 www.aepspan.com Mini-V-Beam Roof and Wall AEP L,SPAN Allowable Inward Loads(Ibs/ft')per Span(ft.-in.) Gauge Span Cond. 2'-0" 2'-6" 3•0" 4'-0" 5-0 6•0" 7'-0" 8'-0" 10'-0" - ASD,W/O 551 353 245 138 88 61 45 34 22 Single Span L/180 - - 229 97 49 29 18 12 6 ASD,W/0 441 297 214 124 81 56 42 32 20 26 Double Span U180 - - 29 15 ASD,W/O 517 357 258 153 100 70 51 40 26 Triple Span L/180 - - - 93 54 34 23 12 ASD,W/O 652 417 290 163 104 72 53 41 26 Single Span L/180 - 131 67 39 24 16 8 ASD,W/O 603 394 277 157 101 71 52 39 25 24 Double Span U180 - - - - - 20 ASD,W/O 734 484 342 195 126 88 65 49 31 Triple Span U180 - - 126 73 46 31 16 ASD,W/O 831 532 369 208 133 92 68 52 33 Single Span L/180 - - 164 84 49 31 20 10 ASD,W/LM 798 517 362 206 131 92 68 51 33 22 Double Span 49 25 L/180 - - - - - - - ASD,W/O 979 640 449 256 164 114 84 64 41 • Triple Span U180 - - 158 92 58 39 20 ASD,W/0 798 511 355 200 128 89 65 50 32 Single Span U180 102 59 37 25 13 ASD,W/O 770 499 348 197 126 88 64 49 32 20 Double Span L/180 - - - - - - - 31 - ASD,W/0 948 617 433 246 158 109 81 61 39 Triple Span L/180 - - - 70 47 24 ASD,W/0 1027 657 456 257 164 114 84 64 41 Single Span L/180 - - - - 134 77 49 33 17 ASD,W/O 991 642 449 254 163 113 83 64 41 18 Double Span - - - 40 L/180 - - - ASD,W/O 1221 795 557 316 203 142 104 79 51 Triple Span L/180 - - - - 92 62 32 w,distributed load NOTES: Single Span 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Top values based on allowable stress(ASD). 3,—L,span— 0] Bottom values based on a deflection limit of U180. m w J "-"denotes that the allowable load is limited by the panel stress vs.deflection limit. o 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 Steel conforms to ASTM A653(Galvanized)or ASTM A792(ZINCALUME)structural steel. 72 Double Span 3 j4--L-_ji--L 1' Tabulated values are for positive(inward)uniform loading only. 5 w Values are based on the American Iron and Steel Institute"Cold Formed Steel Design Triple Span 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Manual"(AISI S100-12). Jam—L—gat—L—01--L--l] Refer to aepspan.com for more complete Mini-V-Beam performance data. Oil Canning:All flat metal surfaces can display waviness commonly referred to © ® © © 6® 8 O as"oil canning". "Oil canning"is an inherent characteristic of steel products,not a defect,and therefore is not a cause for panel rejection. Customer Service Center For most current versions of literature please visit Tacoma,WA Phone:800-733-4955 Fax: 253-272-0791 www.aepspan.com All information stated in the product sheet is correct at time of printing and subject to change without notice,check our website for the latest version. ©2008-2019 ASC Profiles LLC All rights reserved. ZINCALUME is a registered trademark of BlueScope Steel Ltd. 0919 Printed in USA (PS167) 150