Loading...
Specifications ►M$Tzozo -002.37 Isla sw Ozanwhc. j v Title: Structural Calculations OFFICE COPY Rev 1 Project: 15115 SWE Danube Dr, Tigard —Covered Porch Client: Speer JAM SS/ONAL 8/26/2020 Performed by: Killian Emory, PE TRI-CITY y` ENGINEERS TRI-CITY Title: Rev: Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Table of Contents 1. Gravity Calculations 3 1.1. Beams 3 1.2. Footings 9 2. Lateral Calculations 10 2.1. House 10 2.1.1. Wind Loads 10 2.1.2. Seismic Loads 16 2.2. Covered Porch 17 2.2.1. Wind Loads 17 2.2.2. Seismic Loads 20 2.3. Lateral Load Summary 21 2.4. Shear Wall Capacity 22 2.4.1. Exception Check 22 2.4.2. Existing Wall 23 2.4.3. Existing Wall —With Patio 28 Page 2 of 32 TRI-CITY Title: Rev: Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 1. Gravity Calculations 1.1. Beams COMPANY PROJECT di WoodWorks° July 2,2020 09:17 BM1 Design Check Calculation Sheet W ood Works Sizer 2019(Update 1) Loads: Load Type Distribution Pat- Location (ft) Magnitude Unit tern Start End Start End Roof D Dead Full Area 15.00(11.00') psf Roof Lr Roof live Full Area 20.00(11.00') psf Roof S Snow Full Area 25.00(11.00') psf Self-weight Dead Full UDL 15.0 plf Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(In) : 13.604' - - 0' 13.429' Unfactored: Dead 1223 1223 Snow 1871 1871 Roof Live 1496 1496 Factored: Total 3094 3094 Bearing: Capacity Beam 5156 5156 Des ratio Beam 0.60 0.60 Load comb #3 #3 Length 1.50 1.50 Min req'd 0.90 0.90 Cb 1.00 1.00 Cb min 1.00 1.00 Timber-soft,D.Fir-L,No. 1,6x12(5-112"x11-112") Supports:All-Hanger Total length:13.6';Clear span:13.354';Volume=6.0 cu.ft.;Beam or stringer Lateral support:top=2'-0 bottom=at supports;(in); This section PASSES the design code check. Analysis vs.Allowable Stress and Deflection using NDS 201a: Criterion Analysis Value Design Value Unit Analysis/Design Shear iv = 54 Fv' = 170 psi fv/Fv' = 0.32 Bending(+) fb = 893 Fb' = 1347 psi fb/Fb' = 0.66 Live Defl'n 0.18 = L/893 0.45 = L/360 in 0.40 Total Defl'n 0.36 = L/450 0.67 = L/240 in 0.53 Page 3 of 32 TRI-CITY Title: Rev: Structural Calculations 1 1__ ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard - Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN BM1 WoodWorks®Sizer 2019(Update 1) Page 2 Additional Data: FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emio' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+Lr Bending(+): LC #2 = D+Lr Deflection: LC #3 = D+S (live) LC #3 = D+S (total) Bearing : Support 1 - LC #3 = D+S Support 2 - LC #3 = D+S D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2 CALCULATIONS: V max = 2686, V design = 2288 lbs; M(+) = 9017 lbs-ft EI = 1115.29e06 lb-in"2 "Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection - 1.5 dead + "live" Lateral stability(+) : Lu = 2.00' Le = 4.13' RB = 4.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National Design Specification(NDS 2018),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Page 4 of 32 Title: Rev: A TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 COMPANY PROJECT di WoodWorks`K' July 2,2020 09:15 BM2 Design Check Calculation Sheet Wood W orks Sizer 2019(Update 1) Loads: Load Type Distribution Pat- Location [ftl Magnitude Unit tern Start End Start End Roof D Dead Full Area 15.00(8.50') psf Roof Lr Roof live Full Area 20.00(8.50') psf Roof S Snow Full Area 25.00(8.50') psf EMI D Dead Point 0.46 1199 lbs BM1 Lr Roof live Point 0.46 1496 lbs BM1 S Snow Point 0.46 1871 lbs BM2 D Dead Point 18.92 1199 lbs BM2 Lr Roof live Point 18.92 1496 lbs BM2 S Snow Point 18.92 1871 lbs Self-weight Dead Full UDL 15.0 plf Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in) : ----- ----- 18.917' t 01: 7r] Unfactored: Dead 2541 2541 Snow 3881 3881 Roof Live 3104 3104 Factored: Total 6422 6422 Bearing: Capacity Beam 18906 18906 Support 17393 17393 Des ratio Seam 0.30 0.30 Support 0.32 0.32 Load comb #3 #3 Length 5.50 5.50 Min req'd 1.79** 1.79** Cb 1.00 1.00 Cb min 1.00 1.00 Cb support - - Fr sup 575 575 "Minimum bearing length governed by the required width of the supporting member. Timber-soft,D.Fir-L,No.1,6x12(5-112"x11-112") Supports:All-Timber-soft Column,Hem-Fir No.2 Total length:16.92';Clear span:18.0';Volume=8.3 cu.ft.:Beam or stringer Lateral support:top=2'-0 bottom=at supports;(in). Slight overdemand (3%) This section FAILS the design check considered OK. Note 25 psf WARNING:This section violates the following design criteria:Deflection snow load used. Page 5 of 32 r�T T v Title: Rev: 1 lti-�iT 1 Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date. 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN BM2 WoodWorks®Sizer 2019(Update 1) Page 2 Analysis vs.Allowable Stress and Deflection using NDS 2018: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 60 Fv' = 170 psi fv/Fv' = 0.35 Bending(+) fb = 1274 Fb' = 1347 psi fb/Fb' = 0.95 Live Defl'n 0.47 = L/468 0.60 = L/360 in 0.77 Total Defl'n 0.93 = L/233 0.91 = L/240 in 1.03 Additional Data: FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 CRITICAL LOAD COMBINATIONS: Shear : LC $2 = D+Lr Bending(+): LC #2 = D+Lr Deflection: LC d3 = D+S (live) LC 13 = D+S (total) Bearing : Support 1 - LC 13 = D+S Support 2 - LC 13 = D+S D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2 CALCULATIONS: V max = 2836, V design = 2513 lbs; M(+) = 12867 lbs-ft El = 1115.29e06 lb-in"2 "Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection - 1.5 dead + "live" Lateral stability(+) : Lu = 2.00' Le = 4.13' RB = 4.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National Design Specification(NDS 2018),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Page 6 of 32 TRI-CITY Title: Rev: Structural Calculations 1 A ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 COMPANY PROJECT di WoodWorks' July 2,2020 09:17 BM3 Design Check Calculation Sheet WoodWorks Sizer 2019(Update 1) Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Roof D Dead Full Area 15.00(11.00') psf Roof Lr Roof live Full Area 20.00(11.00') psf Roof S Snow Full Area 25.00(11.00') paf Self-weight Dead Full UDL 15.0 pif Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in) : 13.604' { 0' 13.429' Unfactored: Dead 1223 1223 Snow 1871 1871 Roof Live 1496 1496 Factored: Total 3094 3094 Bearing: Capacity Beam 5156 5156 Des ratio Beam 0.60 0.60 Load comb #3 #3 Length 1.50 1.50 Min req'd 0.90 0.90 Cb 1.00 1.00 Cb min 1.00 1.00 Timber-soft,D.Fir-L,No.1,6x12(5-1/2"x11-1/2") Supports:All-Hanger Total length:13.6';Clear span:13.354';Volume=6.0 cu.ft.;Beam or stringer Lateral support:top=2'-0 bottom=at supports;(in); This section PASSES the design code check Analysis vs.Allowable Stress and Deflection using NDS 2018: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fir' = 170 psi fv/Fv' = 0.32 Bending(+) fb = 893 Fb' = 1347 psi fb/Fb' = 0.66 Live Defl'n 0.18 = L/893 0.45 = L/360 in 0.40 Total Defl'n 0.36 - L/450 0.67 - L/240 in 0.53 Page 7 of 32 TRI-CITY Title: Rev: Structural Calculations 1 Ait ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN BM3 WoodWorks®Slzer2019(Update 1) Page 2 Additional Data: FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC4 Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 CRITICAL LOAD COMBINATIONS: Shear : LC 42 = D+Lr Bending(+): LC 02 = D+Lr Deflection: LC 43 = D+S (live) LC 93 = D+S (total) Bearing : Support 1 - LC 43 = D+S Support 2 - LC 43 = D+S D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ABD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2 CALCULATIONS: V max = 2686, V design = 2288 lbs; M(+) = 9017 lbs-ft EI - 1115.29e06 lb-in^2 "Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection - 1.5 dead + "live" Lateral stability(+): Lu = 2.00' Le = 4.13' RB = 4.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National Design Specification(NDS 2018),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Page 8 of 32 . ,A Title: Rev: � TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 1.2. Footings Pa := 65001bf Applied load Sallow := 1500psf Allowable soil bearing Pa 1req := = 4.333ft` Required bearing area Sallow := J4Areq = 28.18 i in Required footing diameter D7eq T Dfe — 5.5in depthfeq:= q 2 = 11.343 in Footing depth required (for strength, not frost depth) Page 9 of 32 Title: Rev'. TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2. Lateral Calculations The only lateral element affected by the addition is the first floor wall supporting the covered patio. 2.1. House 2.1.1. Wind Loads WIND LOADING In accordance with ASCE7-10 Using the directional design method Teses calculation venbn 2.1.06 z 8 S I4 600- j4 600 1.1 Ilan Elevation Building data Type of roof Hipped Length of building b=60.00 ft Width of building d=60.00 ft Height to eaves H=20.00 ft Pitch of main slope ao=24.0 deg Pitch of gable slope rroo=24.0 deg Mean height h=26.68 ft General wind load requirements Basic wind speed V=97.0 mph Risk category II Velocity pressure exponent coef(Table 26.6-1) Kn=0.85 Exposure category(cl 26.7.3) c Enclosure classification(c1.26.10) Enclosed buildings Internal pressure coef eve(Table 26.11-1) =0.18 Internal pressure coef—ve(Table 26.11-1) GCo n=-0.18 Gust effect factor GI=0.85 Minimum design wind loading(c1.27.4.7) pr.=8 IbHtr Topography Topography factor not significant Ka=1.0 Velocity pressure equation q=0.00256 v Ku o Ka x Ks v V'x lest/mph, Velocity pressures table z(ft) K:(Table 27.3-1) q:(psi) 15.00 0.85 17.40 20.00 0 90 18.43 26.68 0.95 19.52 Peak velocity pressure for internal pressure Peak velocity pressure—internal(as roof press.) q i=19.52 psf Page 10 of 32 � ., Title: Rev. TRI-CITY Structural Calculations 1 A . ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Pressures and forces Net pressure P=q•G x Cs.-qi x GC. Net force F.=p a Am Roof load case 1-Wind 0,GCp 0.1 B,sr. Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient cr. pressure qo P Aar F. (ft) 6101 (psi) (ff') (kids) A(-ve) 26.68 -0.30 19.52 -8.46 985.17 -8.33 B(-ve) 26.68 -0.60 19.52 -13.47 985.17 -13.27 C(-ve) 26.68 -0.90 19.52 -18.45 194.77 -3.59 D(-ve) 26.68 -0.90 19.52 -18.45 584.32 -10.78 E(-ve) 26.68 -0.50 19.52 -11.81 1142.94 -13.50 F(-ye) 26.68 -0.30 19.52 -8.49 48.31 -0.41 Total vertical net force F..._-45.57 kips Total horizontal net force F..,=2.01 kips Walls load case 1-Wind 0,GC.,0.18,-cr. Ref. Eat pressure Peak velocity Net pressure Area Net force Zone height coefficient car pressure*, p Aar F. (ft) (Ps) (psf) (ffs) (klps) A. 15.00 0.80 17.40 8.32 900.00 7.49 Ar 20.00 0.80 18.43 9.02 300.00 2.70 -B 26.68 -0.50 19.52 -11.81 1200.00 -14.17 C 26.68 -0.70 19.52 -15.13 1200.00 -18.15 D 26.68 -0.70 19.52 -15.13 1200.00 -18.15 Overall loading Projected vertical plan area of wall A-.o=b.H=1200.00 fly Projected vertical area of roof A...-,o=b a d12 a tan(no)-(d2 a lan(aa))•I tan(asa)=400.71 1P Minimum overall horizontal loading Faara v.=p.,.a Awn_.o+p,,,;,_,a Arra_.o=22.41 kips Leeward net force F.=F.,»=-142 kips Windward net force F.=F.,m,_.+F..r s=10.2 kips Overall horizontal loading F...w=max(F.-F.+F.n,Fwa>w_,m)=26.4 kips Roof load case 2-Wind 0,GC,.-0.18,-0c.. Ref. Ext pressure Peek velocity Net pressure Ana Net force Zone height coefficient cr. pressure qr p Are F. (ft) (pat) (pen (1P) (kips) A(+ve) 26.68 0.19 19.52 6.61 985.17 6.51 B(+ve) 26.68 -0.60 19.52 -6.44 985.17 -6.35 C(+ve) 26.68 -0.18 19.52 0.53 194.77 0.10 D(+ve) 26.68 -0.18 19.52 0.53 584.32 0.31 E(+ve) 26.68 -0.18 19.52 0.53 1142.94 0.60 F(+ve) 26.68 -0.18 19.52 0.53 48.31 0.03 Total vertical net force F.,.=1.10 kips Total horizontal net force F.n=6.29 kips Page 11 of 32 '', 1 RI-C1 1 1 Structural Calculations 1eV A ` ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Walls load case 2-Wind 0,GCp-0.18,-0cn. • Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient cm pressure q.. p Amr F. • (ft) (Psi) (psi) Iftr) (kips) ' Al 15.00 0.80 17.40 15.35 900.00 13.81 Az 20.00 0.80 18.43 16.04 300.00 4.81 B 26.68 -0.50 19.52 -4.78 1200.00 -5.74 C 28.88 -0.70 19.52 -8.10 1200.00 -9.72 D 26.68 -0.70 19.52 -8.10 1200.00 -9.72 Overall loading Projected vertical plan area of wall A..n_.,=b.H=1200.00 ftz Projected vertical area of roof A..._.1).b x d/2.lan(ca)-(d/2 x tan(rm))21 tan(non)=400.71 ft, Minimum overall horizontal loading F...a..m.=p....A...w-o+p,,,r,,.A.w,_r a=22A1 klps Leeward net force F.=F..ee=-5.7 kips Windward net force F.=F.,.a_,+F....._2=18.6 kips Overall horizontal loading Fee =max(F.-F+F.n,F..mi m,)=29.8 kips Roof load case 3-Wind 90,GCp 0.18,Kq Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient or Pressure q, p A... F. (ft) (Psfl Iasi) (W) (kips) A(-ve) 26.68 -0.30 19.52 -8.48 985.17 -8.33 B(-ve) 26.68 -0.60 19.52 -13.47 985.17 -13.27 C(-ve) 26.68 -0.90 19.52 -18.45 194.77 -3.59 D(we) 26.68 -0.90 19.52 -18.45 564.32 -10.78 E(-ve) 26.68 -0.50 19.52 -11.81 1142.94 -13.50 _F(-ve) 26.68 -0.30 19.52 -8.49 48.31 -0.41 Total vertical net force F.,.-45.57 kips Total horizontal net force F..=2.01 kips Walls load case 3-Wind 90,GCp 0.16,-e,. Ref. Ext pressure Peak velocity Net pressure Arse Net force Zone height coefficient cr. pressure q, p A.. Fw (it) (psi) (p■f) (ft') (kips) Al 15.00 0.80 17.40 8.32 900.00 7.49 Az 20.00 0.80 18.43 9.02 300.00 2.70 B 26.88 -0.50 19.52 -11.81 1200.00 -14.17 C 26.68 -0.70 19.52 -15.13 1200.00 -18.15 D 26.68 -0.70 19.52 -15.13 1200.00 -18.15 Overall loading Projected vertical plan area of wall Awn_.,o=d.H=1200.00 8' Projected vertical area of roof A..._i_w=de/4.tan(no)=400.71 ftr Minimum overall horizontal loading F,,..i v=p.„_,.Awn_»eo+prow_,.Awa_,eo=22A1 kips Leeward net force F,=F...e=-14.2 kips Windward net force F.=F.,n_,+F.++_a=10.2 kips Overall horizontal loading RV.w=max(F.-F.+F..,F...w_Mn)=28.4 kips Page 12 of 32 Title: Rev: TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard- Covered Porch Richland, WA 99354 Originator: Date: Checker: Date 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Roof load case 4-Wind 90,GC.-0.18,+or. Ref. Est pressure Peak velocity Net pressure Area Net force Zone height coefficient ca pressure qv p A... F. 176 (P46 (Pet (ft9 (MP*) A(+ve) 26.68 0.19 19.52 6.61 955.17 6.51 B(+ve) 26.68 -0.60 19.52 -6.44 985.17 -6.35 C(+ve) 26.68 -0.18 19.52 0.53 194.77 0.10 D(+ve) 26.68 -0.18 19.52 0.53 554.32 0.31 E(+ve) 26.68 -0.18 19.52 0.53 1142.94 0.60 F(eve) 26.68 -0.18 19.52 0.53 48.31 0.03 Total vertical net force F...=1.10 klps Total horizontal net force F..n=5.23 kips Walls load case 4-Wind 90,GC..4.18,+c,. Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient Cn. pressure go P Ana F. (ft) last) (psI (ft') (kips) A. 15.00 0.80 17.40 15.35 900.00 13.81 A. 20.00 0.80 18.43 16.04 300.00 4.81 B 26.68 -0.50 19.52 -4.78 1200.00 -5.74 C 26.68 -0.70 19.52 -8.10 1200.00 -9.72 D 26.68 -0.70 19.52 -8.10 1200.00 -9.72 Overall loading Protected vertical plan area of wall A,..._.eo=d x H=1200.00 fP Projected vertical area of roof A..._r_ao=dT14 x tan(aa)=400.71 IV Minimum overall horizontal loading F.....:.=p..l.x A..t cto+prnv r a A,.n_1_00=22.41 kips Leeward net force F,=F..e=4.7 kips Windward net force F.=F..w_r+F.ee 2=18.8 kips Overall horizontal loading F.nw=max(F.-Fi+F.n,Sae,..,)=29.6 kips Page 13 of 32 Title: Rev: TRI—CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 A2 At N 60 ft Windward face C o B o N N 60ft-- ►{ 60ft �I Side face Leeward face Page 14 of 32 Title: Rev: (� TRI-CITY Structural Calculations 1 ~t` ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 111 Pr / A2 A, CD 4_ 60ft r Windward face 1a= c C o B o N N i N 60 ft ► H 60 ft —ol Side face Leeward face Page 15 of 32 • Title: Rev: �T+�R��I+7-�C7�I�TDY� Structural Calculations 1 ENGINEERS EERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.1.2. Seismic Loads SEISMIC FORCES(ASCE 7.10) Tedia raiNeeon version 3.1.00 Site parameters Site class D Mapped acceleration parameters(Section 11.4.1) at short period Ss=0.95 al 1 sec period S+=0.42 Site coefficientat short period(Table 11.4-1) F.=1.120 at 1 sec period(Table 11.4-2) F.=1.580 Spectral response acceleration parameters at short period(Eq.11.4-1) Sus=F.=Ss=1.064 al 1 sac period(Eq.11.4-2) Su,=F.x S,=0.664 Design spectral acceleration parameters(Sect 11.4.4) at short period(Eq.11.4-3) Sus= 2I 3=Sus=0.709 al 1 sec period(Eq.11.4-4) Sc,=2/3 x Stn=0.442 Seismic design category Risk category(Table 1.5-1) II Seismic design category based on short period response acceleration(Table 11.6-1) D Seismic design category based on 1 sec period response acceleration(Table 11.6-2) D Seismic design category D Approximate fundamental period Height above base to highest level of building hi,=35 ft From Table 12.8.2: Structure type All other systems Building period parameter C, C.=0.02 Building period parameter s x=0.75 Approximate fundamental period(Eq 12.8.7) T.=C.x(h.)'=lsec/(1flp=0.288 sec Building fundamental period(Sect 12.8.2) T=T.=0.288 sec Long-period transition period T.=12 sec Seismic response coefficient Seismic force-resisting system(Table 12.2-1) A.Bearing_Wall_Systems 15.Light-frame(wood)walls sheathed with wood structural panels Response modification factor(Table 12.2-1) R=6.5 Seismic knportance factor(Table 1.5.2) I.=1.000 Seismic response coefficient(Sect 12.8.1.1) Calculated(Eq 12.8-3) C.a,.=Sas I(R/I.)=0.1091 Maximum(Eq 12.8-3) C..r.=Sin I((T/1 sec)_(R I le))=0.2365 Minimum(Eq 12.8-5) C....=max(0.044=Sos=10.01)=0.0312 Seismic response coefficient C.=0.1091 Seismic base shear(Sect 12.8.1) Effective seismic weight of the structure W=250.0 kips Seismic response coefficient C.=0.1091 Seismic base shear(Eq 12.8-1) V=C.=W=27.3 kips Page 16 of 32 • Title: Rev: TRI-CITY Structural Calculations 1 A ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.2. Covered Porch 2.2.1. Wind Loads WIND LOADING In accordance with ASCE7-10 Using the directional design method Tedds ralcSat on version 2.106 N I-15511 ci r 22f1 sl Plan Elevation Building data Type of roof Gable free Length of building b=15.50 ft Width of building d=22.00 ft Height to eaves H=10.00 ft Pitch of roof ao=24.0 deg Mean height h=12.45 ft Wind flow Clear General wind load requirements Basic wind speed V=97.0 mph Risk category II Velocity pressure exponent coef(Table 26.6-1) Kn=0.85 Exposure category(d 26.7.3) C Enclosure classification(c1.26.10) Open buildings Internal pressure coef+ve(Table 26.11-1) GCpi p=0.00 Internal pressure coat—ve(Table 26.11-1) GCpL n=0.00 Gust effect factor G=0.85 Topography Topography factor not significant Kn=1.0 Velocity pressure Velocity pressure coefficient(T.27.3-1) K:=0.85 Velocity pressure qn=0.00256.K,a Ka a Ke a V2 a 1psflmph2=17.4 psf Peak velocity pressure for internal pressure Peak velocity pressure—internal(as roof press.) qi=17.40 psf Pressures and forces Net pressure p=qn<G a Cry Net force F,.=p•Are Page 17 of 32 • . . , Title: Rev: A TART I7-7C7�hTnY� Structural Calculations 1 ENGINEERS Gil V 1 LRS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Minimum design wind loading(d.27A.7) pmn_r=16 lb/fix Roof load case 1-Wind 0-Loadcase A Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient pressure qe p M, Fr (ft) cr (pet) _ (Pet) (ft'I (kips) 1(eve) 12.45 1.14 17.40 18.86 186.64 3.15 2(eve) 12.45 0.14 17.40 2.07 186.64 0.39 Total vertical net force F..v=3.23 kips Total horizontal net force Fen=1.12 kips Minimum loading Projected vertical area of roof Amu o=b x dl2 x tan(ov)=75.91 ft' Minimum overall horizontal loading Fv.eihoen=prier.,x Aran.o=1.21 kips Roof load case 2-Wind 0-Loadcase B Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient pressure co p Are F. (ft) ca (pet) (pat) (ft9 (hips) 1(eve) 12.45 -0.10 17.40 -1.48 186.64 -0.28 2(eve) 12.45 -0.82 17.40 -12.13 186.64 -2.26 Total vertical net force F..._-2.32 kips Total horizontal net force Fa.=0.81 kips Minimum loading Projected vertical area of roof Av.n_,o=b x d/2 x tan(oo)=75.91 ft' Minimum overall horizontal loading F..w_m.=per,x A.vn_,_o=1.21 kips Roof load case 3-Wind 90-Loadcase A Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient pressure co p A., F. (ft) cc (Psf) (pef) (ft') (kips) 1(eve) 12.45 -0.80 17.40 -11.83 299.79 -3.55 2(eve) 12.45 -0.60 17.40 -8.88 73.48 -0.65 Total vertical net force F..v=-3.84 kips Total horizontal net force Fen=0.00 kips Minimum loading Projected vertical area of roof Av.e_r w=0.00 0' Minimum overall horizontal loading Fvee.an=peek_.x An.n.so=0.00 kips Roof load case 4-Wind 90-Loadcase B Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient pressure qn p Ant F. (ft) c= (psi) (pal) (19 (kips) 1(+ve) 12.45 0.80 17.40 11.83 299.79 3.55 2(eve) 12.45 0.50 17.40 7.40 73.48 0.54 Total vertical net force F..,a 3.74 kips Total horizontal net force NO=0.00 kips Minimum loading Projected vertical area of roof Av«r_.co=0.00 ft' Minimum overall horizontal loading F..eis v:,=pine_,x A....so=0.00 kips Page 18 of 32 • Title: Rev: TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 1 w. �mmav Page 19 of 32 % Title: Rev: 7�T 7-�7�TY Structural Calculations 1 ENGINEERS GI VEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.2.2. Seismic Loads SEISMIC FORCES(ASCE 7-10) Terkb eaoJa ion version 3.1.00 Site parameters Site class o Mapped acceleration parameters(Section 11.4.1) el short period Ss=0.95 al 1 sec period Sr=0.42 Site ccefficientat short period(Table 11.4-1) F.=1.120 al 1 sec period(Table 11.4-2) F.=1.580 Spectral response acceleration parameters at short period(Eq.11.4-1) Sus=F.x Ss=1.064 al 1 sec period(Eq.11.4-2) Sar=F.x Sr=0.664 Design spectral acceleration parameters(Sect 11.4.4) et short period(Eq.11.4-3) Sos= 2/3 a Sus=0.709 et 1 sec period(Eq.11.4-4) Sor=2/3 x Shut=0.442 Seismic design category Risk category(Table 1.5-1) II Seismic design category based on shod period response acceleration(Table 11.6-1) D Seismic design category based on 1 sec period response acceleration(Table 11.6-2) D Seismic design category D Approximate fundamental period Height above base to highest level of budding h.=15 ft From Table 12.8-2: Structure type All other systems Building period parameter C, Ci=0.02 Building period parameter s x=0.75 Approximate fundamental period(Eq 12.8-7) T.=Cr a(NY a 1sec I(1ft)'=0.152 sec Building fundamental period(Sect 12.8.2) T=T.=0.152 sec Lang-period transition period Tr=12 sec Seismic response coefficient Seismic force-resisting system(Table 12.2-1) A.Bearing_Wall_Systems 15.Light-frame(wood)walls sheathed with wood structural panels Response modification factor(Table 12.2-1) R=6.5 Seismic importance factor(Table 1.5-2) I.=1.000 Seismic response coefficient(Sect 12.8.1.1) Calculated(Eq 12.8-3) C.mr=Sos/(R/I.)=0.1091 Maximum(Eq 12.8-3) Cr aria=Sol/((T/1 sec)x(R/1.))=0.4465 Minimum(Eq 12.8-5) C..a.=max(0.044 x Sos x 14.01)=0.0312 Seismic response coefficient Cr=0.1091 Seismic base shear(Sect 12.8.1) Effective seismic weight of the structure W=5.5 kips Seismic response coefficient Cr=0.1091 Seismic base shear(Eq 12.8-1) V=C.x W=0.6 kips Page 20 of 32 Tille:/\ Rev: TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.3. Lateral Load Summary Wind Loads -House Net Roof Wind Pressure proof=5.5 psf Roof Tributary Area Aroof=495 sf Net Wall Wind Pressure pwau=21 psf Wall Tributary Area Awau=480 sf (bottom 4 ft not considered for shear load on wall) Wind Shear Load WH= 12.8 kip Seismic Loads -House Seismic Base Shear VH= 17 kip Seismic Shear Load EH=8.5 kip Wind Loads—Covered Patio Wind Shear Load WP= 1.3 kip Seismic Loads—Covered Patio Seismic Base Shear VP=0.6 kip Seismic Shear Load Ep=0.6 kip (posts are not credited for resistance to lateral load) Total Unfactored Shear Loads Total Wind Shear Load W= 14.1 kip Total Seismic Shear Load E= 9.1 kip Page 21 of 32 Title: Rev: .74 TRI-CITY Structural Calculations 1 AA ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.4. Shear Wall Capacity 2.4.1. Exception Check 2019 OSSC, Ch.34 adopts the 2015 IEBC with modifications. Exception to 2015 IEBC 402.4 States: Exception:Any existing lateral load-carrying structural element whose demand-capacity ratio with the addition considered is no more than 10 percent greater than its demand-capacity ratio with the addition ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios. the demand shall consider applicable load combinations with design lateral loads or forces in accordance with Sections 1609 and 1613 of the International Building Code. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads,forces and capacities shall account for the cumulative effects of additions and alterations since original construction. Exception Check DCR of Existing Wall DCRo=0.99 (see shear wall calculations below) DCR of Existing Wall with Patio DCRi = 1.07 (see shear wall calculations below) % Increase Required 8% % Increase Allowable 10% Exception Applies Page 22 of 32 Title: Rev. ENGINEERS Structural Calculations 1 . L d V GIN ERRS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.4.2. Existing Wall Note: Code minimum construction requirements assumed. WOOD SHEAR WALL DESIGN INDSI In accordance with ND52015 allowable stress design and the perforated shear wall method lades nlculelion version 1.2.04 Panel details Structural wood panel sheathing on one side Panel height h=10 ft Panel length b=46 ft a 1444iasisi4444i44444isiisiiii444444iii4iia4444iiiitaliiili444ii44ifGffii4444444i4Hisi4 11, 1.17111 i iir 1,111 I?I I Li Iib I Panel opening details Width of opening w. =4 ft Height of opening hot=5 ft Height to underside of lintel over opening 6l=6.67 ft Position of opening Poi=4.8 ft Width of opening wow=6 ft Height of opening hoz=6.67 ft Height to underside of lintel over opening b2=6.67 ft Position of opening Pm=12 ft Width of opening ww=6.25 ft Height of opening hw=5 ft Height to underside of lintel over opening Im=6.67 ft Position of opening Pw=23 ft Total area of wall A=hob-woo a ho,-vox hoz-wwxhw=366.73 ft' Panel construction Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5" Cross-sectional area of studs A.=8.26 in' Stud spacing $=16 in Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5'x 5.5" Cross-sectional area of end posts A.=16.5 in° Hole diameter Dia=1 in Net cross-sectional area of end posts M=13.5 ire Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5" Service condition Dry Temperature 100 degF or less Vertical anchor stiffness k.=30000 lb/in From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick) Species,grade and size classification Douglas Fir-Larch,not grade,2"&wider Page 23 of 32 ATitle: Rev: Structural Calculations 1 \ TRI-CITY ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Specific gravity G=0.50 Tension parallel to grain F,=575 lb/in' Compression parallel to grain F.=1350 Ib/in' Modulus of elasticity E=1600000 lb/in' Minimum modulus of elasticity Fmk,=580000 lb/in' Sheathing details Sheathing material 7/16"wood panel oriented strandboard sheathing Fastener type Bd common nails at 6"centers From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels Nominal unit shear capacity for seismic design v.=min(520 plf,1740 plf)=520 lb/ft Nominal unit shear capacity for wind design e, min(730 plf,2435 p0)=730 Ib/6 Apparent shear wall shear stiffness G.=15 kips/in Loading details Dead load acting on top of panel D=165 Ib/ft Floor live load acting on top of panel Lr=40 Ib/ft Roof live load acting on top of panel L=60 lb/ft Self weight of panel Su=12 IMP In plane wind load acting at head of panel W=12800 lbs Wind load serviceability factor In plane seismic load acting at head of panel Es=8500 lbs Design spectral response accel.par.,short periods Sea=0.95 From IBC 2015 c1.1605.3.1 Basic load combinations Load combination no.1 D+0.6W Load combination no.2 D+0.7E Load combination no.3 D+0.45W+0.75L,+0.75(L,or S or R) Load combination no.4 D+0.525E+0.75L,+0.75S Load combination no.5 0.6D+0.6W Load combination no.6 0.6D+0.7E Adjustment factors Load duration factor-Table 2.3.2 Co=1.60 Size factor for tension-Table 4A CFI=1.30 Size factor for compression-Table 4A Cfc=1.10 Wet service factor for tension-Table 4A Cie=1.00 Wet service factor far compression-Table 4A C..=1.00 Wet service factor for modulus of elasticity-Table 4A Cae=1.00 Temperature factor for tension-Table 2.3.3 Cu=1.00 Temperature factor for compression-Table 2.3.3 Cc=1.00 Temperature factor for modulus of elasticity-Table 2.3.3 Cs=1.00 Incising factor-d.4.3.8 G=1.00 Buckling stiffness factor-d.4.4.2 Cr=1.00 Adjusted modulus of elasticity Eon=E s x Cue.Cs.C..CT=580000 psi Critical buckling design value F.s=0.822 x Erne'I(h I d)'=1002 psi Reference compression design value Fe=F.x Co x Cur.x Cs x Cry.G=2376 psi For sawn lumber c=0.8 Column stability factor-eqn.3.7-1 Cr=(1+(Fee/Fe))/(2xc)-11([(1+(Fur/Fe))1(2 x el?-(Re/F5)I c)=0.38 Page 24 of 32 ITY Structural Calculations 1eV TRI-C ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard—Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios Maximum shear wall aspect ratio 3.5 Perforated wall length b,=4.6 ft Shear wall aspect ratio h I b,=2.174 Perforated wall length ba=34 ft Shear wall aspect ratio h l bs=2.941 Perforated wall length ba=5 ft Shear wall aspect ratio h I bo=2 Perforated wall length b.=16.75 ft Shear wall aspect ratio h I b.=0.597 Shear capacity adjustment factor—cl.4.3.3.5 Sum of perforated shear wall lengths EL=b.x 2 x bs/h+bs x 2 x b./h+bu+b.=27.19 ft Total length of perforated shear wall La=b.+Wet+bt+W.r+bs+Wm+b.=46 ft Total area of openings A.=wsi x h..+wax x hos+wet a het=91.27 ftr Sheathing area ratio(eqn.4.3-6) r=11(1+A.I(h x EL)).0.749 Shear capacity adjustment factor(eqn.4.3-5) Co=0.843 Perforated shear wall capacity Maximum shear force under wind loading V . =0.6 x W=7.68 kips Shear capacity for wind loading V.=v+x Co a EL/2=6.366 kips V..=./V.=0.918 PASS-Shear capacity for wind load exceeds maximum shear force Maximum shear force under seismic loading V.se,=0.7 x Es=5.95 kips Shear capacity for seismic loading V.=vs a Co a EL/2=5.959 kips Vs m../Vs=0.998 PASS-Shear capacity for seismic load exceeds maximum shear force Chord capacity for chords 1 and 2 Load combination 6 Shear force for maximum tension V=0.7 a E.=5.95 kips Axial force for maximum tension P=(0.6 a(0+S.,a h)-0.7 x 0.2 a See a(D+Ste a h))x b/2=3.081 kips Maximum tensile force in chord T=V a h I((C,a EL))-P=-0.465 kips Maximum applied tensie stress k=T I A=t_-34lbIinN Design tensile stress Fi=F.x Co x Cs.x Cs a Cn a G=1196 lbilnr k I F.=-0.029 PASS.Design tensile stress exceeds maximum applied tensile stress Load combination 1 Shear force for maximum compression V=0.6 x W.7.68 kips Axial force for maximum compression P=(CO+Sex h))x s 12=0.19 kips Maximum compressive force in chord C=V a h l((C.a EL))+P=3.541 kips Maximum applied compressive stress f=CIA.=215 Ib/In' Design compressive stress F.=F.a Cox Dec a Cx a Cr.x C.•C. =894 lb/in, f.I =0.240 PASS-Design compressive stress exceeds maximum applied compressive stress Page 25 of 32 Title: Rev: /'11, TRI—CITY Structural Calculations Aai ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard— Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Collector capacity Cased.aoM Force aWnn J1 ae s es t d1 i .0a Collector seismic design force factor Fw,=1 Maximum shear force on wall Vm..=max(Fcoa x V.mo,V.m.,)=7.68 kips Uniform shear applied to wall v.= I((C.x EL))=335.1 plf Shear resisted by wall segments se=v.x b!(b1+be+W.I.b.).518.1 plf Maximum force in collector P.s=3.066 kips Maximum applied tensile stress k=Pam/(2 x A.)=186 lb/ina Design tensile stress F.=Fr x Cox Coe a C.a Cf.x C=1196 Ib/in' f. Fr=0.155 PASS-Design tensile stress exceeds maximum applied tensile stress Maximum applied compressive stress 1.=P,mx I(2 x A.)=186 Iblin5 Column stability factor Cr=1.00 Design compressive stress F.'=F.x Co Csc x Cx.Cr.x G x Cr=2376 lb/inw h/F.'=0.078 PASS•Design compressive stress exceeds maximum applied compressive stress Wind load deflection Design shear force V..=fw.w x W=12.8 kips Deflection limit Av.As.=h/240=0.5 in Induced unit shear w:.,,..=Vex I(C..£L.)=558.48 lb/ft Anchor tension force Ta=max(0 kips,vn._.,..x h-0.6 x(D•Sw x h)x b/2)=1.652 kips Shear wall deflection—Eqn.4.3-1 fi.,m=2 x Va m..a ho/(3 x E x A.x EL.)+va.-.mx a h((G.)+h (k.x£L)=0.399 in 26,4e.r..a 0.798 PASS-Shear wall deflection Is less than deflection limit Seismic deflection Design shear force Va.=Eq=8.5 kips Deflection limit A..r.,=0.020 x h=2.4 in Induced unit shear vw<_„,..=Va.!(C.x£L)=370.86 Iblfl Anchor tension force Ta=max(0 kips,va._mu x h-(0.8-0.2 x Sos)x(D+SM x h)x b/2). 1.021 kips Shear wall elastic deflection—Eqn.4.3-1 6....=2 a vr._m..a ha/(3 x E x A.x£L)+va._m..x h/(G.)+h a Ts! (k.x£L)=0.264 in Deflection amputation factor Ca,.4 Seismic Importance factor I.=1 Page 26 of 32 Title: Rev: A TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Amp.seis.deflection—ASCE7 Eqn.12.8-15 &..,.=Cm x&a.,./le=1.058 in &»/4. =0.44 PASS•Shear wall deflection is less than deflection limit Page 27 of 32 Title: Rev. �T7�RS I-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 2.4.3. Existing Wall —With Patio Note: Code minimum construction requirements assumed. WOOD SHEAR WALL DESIGN(NOS) In accordance with ND82015 allowable stress design and the perforated shear wall method Tema celujaliun version 12.04 Panel details Structural wood panel sheathing on one side Panel height h=10 ft Panel length b=46 ft ii14411 i44HiiiHihi4NtHfHH01441+1+141 444 14+14 434101ti{1i441401+iH1i1Hi4i4+4414 J k • r r Panel opening details Width of opening w",=4 ft Height of opening hot=5 ft Height to underside of lintel over opening l",=6.67 ft Position of opening Po,=4.6 ft Width of opening wm=6 ft Height of opening he=6.67 ft Height to underside of lintel over opening laz=6.67 ft Position of opening Pot=12 ft Width of opening ww=6.25 ft Height of opening hw=5 ft Height to underside of lintel over opening Iw=8.67 ft Position of opening Pot=23 ft Total area of wall A=h=b-we,x he,-ww x hoz-w3.hm=368.73 ft2 Panel construction Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5' Cross-sectional area of studs A.=8.25 In2 Stud spacing s=16 in Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5'x 5.5" Cross-sectional area of end posts A.=18.5 in2 Hole diameter Die=1 in Net cross-sectional area of end posts A.=13.5 ins Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5" Service condition Dry Temperature 100 degF or less Vertical anchor stiffness ka=30000 lb/in From NOS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick) Species,grade and size classification Douglas Fir-Larch,no.2 grade,2"&wider Page 28 of 32 �. Title: Rev TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard-Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Specific gravity G=0.50 Tension parallel to grain Fr=575 Ib/in2 Compression parallel to grain F.=13501bli& Modulus of elasticity E=1600000 Ibline Minimum modulus of elasticity E =580000 Ib/in' Sheathing details Sheathing material 7/16"wood panel oriented strandboard sheathing Fastener type Bd common nails at 6"centers From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels Nominal unit shear capacity for seismic design v.=min(520 plf,1740 plf)=520 lb/ft Nominal unit shear capacity for wind design w.=min(730 pIt,2435 plf)=730 Ib/ft Apparent shear wall shear stiffness G.=15 kipstin Loading details Dead load acting on top of panel D=185 lb/ft Floor live load acting on top of panel la=40 lbR1 Roof live load acting on top of panel L.=60 16/ft Self weight of panel Sr=12 Ibffe In plane wind load acting at head of panel W=14100 lbs Wind load serviceability factor for....=1.00 In plane seismic load acting at head of panel En=9100 lbs Design spectral response accel.par.,short periods Sos=0.95 From IBC 2015 01.1605.3.1 Basic load combinations Load combination no.1 D+0.6W Load combination no.2 0+0.7E Load combination no.3 D+0.45W+0.75Lr+0.75(Lr or S or R) Load combination no.4 D+0.525E+0.75Lr+0.75S Load combination no.5 0.6D+0.6W Load combination no.6 0.6D+0.7E Adjustment factors Load duration factor-Table 2.3.2 Co=1.60 Size factor for tension-Table 4A Cr,=1.30 Size factor for compression-Table 4A Crc=1.10 Wet service factor for tension-Table 4A Ca=1.00 Wet service factor for compression-Table 4A Cu.=1.00 Wet service factor for modulus of elasticity-Table 4A Cam=1.00 Temperature factor for tension-Table 2.3.3 Cn=1.00 Temperature factor for compression-Table 2.3.3 Cs=1.00 Temperature factor for modulus of elasticity-Table 2.3.3 Cs=1.00 Incising factor-ct.4.3.8 =1.00 Buckling stiffness factor-ct.4.4.2 Cr=1.00 Adjusted modulus of elasticity En..=Ewe.Cus•Ca.G.Cr=580000 psi Critical buckling design value Fes=0.822 x Elm.'/(h I ay.1002 psi Reference compression design value Fe=Fe.Cox Cee x Cc x Cr,.C =2376 psi For sawn lumber c=0.8 Column stability factor-egn.3.7-1 CP=(1+(F.sfFd))/(2cc)-v([l1+(Fr IF,:'))f(2 xc)]_-(Fc IF')I c)=0.38 Page 29 of 32 Title: Rev: ��++7��R����I7��CI�TnnY�� Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios Maximum shear wall aspect ratio 3.5 Perforated wall length b+=4.6 ft Shear wall aspect ratio h/b,=2.174 Perforated wall length ba=3.4 ft Shear wall aspect ratio h I ba=2.941 Perforated wall length ba=5 ft Shear wall aspect ratio h I ba=2 Perforated wall length b =16.75 ft Shear wall aspect ratio h/ba=0.597 Shear capacity adjustment factor—c1.4.3.3.5 Sum of perforated shear wall lengths EL=b.x 2 x b.I h*ba+2 x b./h+ba+b.=27.19 ft Total length of perforated shear wall La,=b,+vim+ba+wos+ba+woo+br=49 ft Total area of openings Ao=wo.x h.,+wm x hox+woe x hoe=9127 Or Sheathing area ratio(eqn.4.3-6) r=1/(1*Ax/(h x£L))=0.749 Shear capacity adjustment factor(eqn.4.3-5) Co=0.843 Perforated shear wall capacity Maximum shear force under wind loading V..,a=0.6 x W=6.46 kips Shear capacity for wind loading Vs)=vw x Co x£L/2=8.366 kips Vw,,,=/Vw=1.011 FAIL-Shear capacity for wind load is less than maximum shear force Maximum shear force under seismic loading V.nb=0.7 x Ea=6.37 kips Shear capacity for seismic loading V.=v.x Co x£L/2=5.959 kips V..xn.IV.=1.069 FAIL-Shear capacity for seismic load Is less than maximum shear force Chord capacity for chords 1 and 2 Load combination 5 Shear force for maximum tension V=0.6 x W=8.46 kips Axial force for maximum tension P=(0.6 x(D+Sw x h))x b/2=3.933 kips Maximum tensile force in chord T=V a h/((Cox£L))-P=-0.242 kips Maximum applied tensile stress k=T/An=-16 lb/tn' Design tensile stress Ft'=F x Coo Cu,x Ce x Cn a G=1196 Ibfina fIFi=-0.015 PASS-Design tensile stress exceeds maximum applied tensile stress Load combination 1 Shear force for maximum compression V=0.6 x W=8.46 kips Axial force for maximum compression P=((D+S.,x h))x a/2=0.19 kips Maximum compressive force in chord C=V x hi((Cox IL)).P=3.881 kips Maximum applied compressive stress f.=C l A.=235 Olin Design compressive stress Fr'=Fes Coo C.=x Cs x Cr,x G x Co=894 Ibri n' f./Fa=0.263 PASS-Design compressive stress exceeds maximum applied compressive stress Page 30 of 32 • A Title: Rev: TRI-CITY Structural Calculations ENGINEERS f _L ��, Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard - Covered Porch Richland, WA 99354 Originator: Date Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Collector capacity Coattla am.Iptt Uepam Ikea; 34 21 OS 1.1 419 Collector seismic design force factor Foe=1 Maximum shear force on wall Vma=max(Fcr x V.mw V.,�..)=8.46 kips Uniform shear applied to wall v.=V...I((Co x EL))=369.1 plf Shear resisted by wall segments w=V.x b/(b1+1)21.133.b4)=570.7 plf Maximum force in collector Pm=3.377 kips Maximum applied tensile stress fi=P.c./(2 x A.)=205 Ibfin2 Design tensile stress Fi=Fa x Cox C.e x Cs x Cr.x C,=1196 Ib/In3 f/Fi=0.171 PASS-Design tensile stress exceeds maximum applied tensile stress Maximum applied compressive stress f.=Posit(2 x A.)=205 ibfin3 Column stability factor CP=1.00 Design compressive stress Fd=Fc x Cox Cu.x Cx x Cr.x C x CP=2376 Ib/ns fc I F.'=0.086 PASS-Design compressive stress exceeds maximum applied compressive stress Wind load deflection Design shear force Va.=fw..,,.x W=14.1 kips Deflection limit Aw,.00 h/240=0.5 in Induced unit shear w._m.,=Vw!(Cox EL)=615.2 IbM Anchor tension force Ta=max(0 Mps,ya._m..x h-0.6 x(D•SM x h)x b/2)=2.219 kips Shear wall deflection—Eqn.4.3-1 &.==2 x vaxm..x h3/(3 x E x A.x EL)+va.m..x h/(G.)+h x Ta I (k.x EL).0.444 In Ss../A.rP«=0.888 PASS-Shear wall deflection is less than deflection limit Seismic deflection Design shear force Vrx=Ea=9.1 kips Deflection limit o.Jam=0.020 x h=2.4 in Induced unit shear vasm.x=Vs!(C.x EL)=397.04 Iblft Anchor tension force T.=max(0 kips,v.m..x h-(0.6-0.2 x Sus)x(D+Sw x h)x b/2)_ 1.283 kips Shear wall elastic deflection—Eqn.4.3-1 Sena=2 x Vas max h3/(3.E x A..EL)+V.._m..a h I(Ga)+h a To/ (k.x EL)=0.285 in Deflection ampificalion factor Cm=4 Seismic importance factor I.=1 Page 31 of 32 Title: Rev: TRI-CITY Structural Calculations 1 ENGINEERS Project: 2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch Richland, WA 99354 Originator: Date: Checker: Date: 509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020 Amp.seis.deflection-ASCE7 EQn.12.8-15 8...=Css 5..,./6=1.139 in 56../4:yw=0.475 PASS-Shear wall deflection is less than deflection limit • Page 32 of 32