Specifications ►M$Tzozo -002.37
Isla sw Ozanwhc. j v
Title:
Structural Calculations OFFICE COPY
Rev 1
Project:
15115 SWE Danube Dr, Tigard —Covered Porch
Client:
Speer
JAM
SS/ONAL
8/26/2020
Performed by:
Killian Emory, PE
TRI-CITY
y` ENGINEERS
TRI-CITY Title: Rev:
Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Table of Contents
1. Gravity Calculations 3
1.1. Beams 3
1.2. Footings 9
2. Lateral Calculations 10
2.1. House 10
2.1.1. Wind Loads 10
2.1.2. Seismic Loads 16
2.2. Covered Porch 17
2.2.1. Wind Loads 17
2.2.2. Seismic Loads 20
2.3. Lateral Load Summary 21
2.4. Shear Wall Capacity 22
2.4.1. Exception Check 22
2.4.2. Existing Wall 23
2.4.3. Existing Wall —With Patio 28
Page 2 of 32
TRI-CITY Title: Rev:
Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
1. Gravity Calculations
1.1. Beams
COMPANY PROJECT
di WoodWorks°
July 2,2020 09:17 BM1
Design Check Calculation Sheet
W ood Works Sizer 2019(Update 1)
Loads:
Load Type Distribution Pat- Location (ft) Magnitude Unit
tern Start End Start End
Roof D Dead Full Area 15.00(11.00') psf
Roof Lr Roof live Full Area 20.00(11.00') psf
Roof S Snow Full Area 25.00(11.00') psf
Self-weight Dead Full UDL 15.0 plf
Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(In) :
13.604' - -
0' 13.429'
Unfactored:
Dead 1223 1223
Snow 1871 1871
Roof Live 1496 1496
Factored:
Total 3094 3094
Bearing:
Capacity
Beam 5156 5156
Des ratio
Beam 0.60 0.60
Load comb #3 #3
Length 1.50 1.50
Min req'd 0.90 0.90
Cb 1.00 1.00
Cb min 1.00 1.00
Timber-soft,D.Fir-L,No. 1,6x12(5-112"x11-112")
Supports:All-Hanger
Total length:13.6';Clear span:13.354';Volume=6.0 cu.ft.;Beam or stringer
Lateral support:top=2'-0 bottom=at supports;(in);
This section PASSES the design code check.
Analysis vs.Allowable Stress and Deflection using NDS 201a:
Criterion Analysis Value Design Value Unit Analysis/Design
Shear iv = 54 Fv' = 170 psi fv/Fv' = 0.32
Bending(+) fb = 893 Fb' = 1347 psi fb/Fb' = 0.66
Live Defl'n 0.18 = L/893 0.45 = L/360 in 0.40
Total Defl'n 0.36 = L/450 0.67 = L/240 in 0.53
Page 3 of 32
TRI-CITY Title: Rev:
Structural Calculations 1
1__ ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard - Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN
BM1 WoodWorks®Sizer 2019(Update 1) Page 2
Additional Data:
FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC#
Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2
Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2
Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - -
E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3
Emio' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3
CRITICAL LOAD COMBINATIONS:
Shear : LC #2 = D+Lr
Bending(+): LC #2 = D+Lr
Deflection: LC #3 = D+S (live)
LC #3 = D+S (total)
Bearing : Support 1 - LC #3 = D+S
Support 2 - LC #3 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
V max = 2686, V design = 2288 lbs; M(+) = 9017 lbs-ft
EI = 1115.29e06 lb-in"2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection - 1.5 dead + "live"
Lateral stability(+) : Lu = 2.00' Le = 4.13' RB = 4.3
Design Notes:
1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National
Design Specification(NDS 2018),and NDS Design Supplement.
2.Please verify that the default deflection limits are appropriate for your application.
3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
Page 4 of 32
Title: Rev:
A TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
COMPANY PROJECT
di WoodWorks`K'
July 2,2020 09:15 BM2
Design Check Calculation Sheet
Wood W orks Sizer 2019(Update 1)
Loads:
Load Type Distribution Pat- Location [ftl Magnitude Unit
tern Start End Start End
Roof D Dead Full Area 15.00(8.50') psf
Roof Lr Roof live Full Area 20.00(8.50') psf
Roof S Snow Full Area 25.00(8.50') psf
EMI D Dead Point 0.46 1199 lbs
BM1 Lr Roof live Point 0.46 1496 lbs
BM1 S Snow Point 0.46 1871 lbs
BM2 D Dead Point 18.92 1199 lbs
BM2 Lr Roof live Point 18.92 1496 lbs
BM2 S Snow Point 18.92 1871 lbs
Self-weight Dead Full UDL 15.0 plf
Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in) :
----- ----- 18.917' t
01: 7r]
Unfactored:
Dead 2541 2541
Snow 3881 3881
Roof Live 3104 3104
Factored:
Total 6422 6422
Bearing:
Capacity
Beam 18906 18906
Support 17393 17393
Des ratio
Seam 0.30 0.30
Support 0.32 0.32
Load comb #3 #3
Length 5.50 5.50
Min req'd 1.79** 1.79**
Cb 1.00 1.00
Cb min 1.00 1.00
Cb support - -
Fr sup 575 575
"Minimum bearing length governed by the required width of the supporting member.
Timber-soft,D.Fir-L,No.1,6x12(5-112"x11-112")
Supports:All-Timber-soft Column,Hem-Fir No.2
Total length:16.92';Clear span:18.0';Volume=8.3 cu.ft.:Beam or stringer
Lateral support:top=2'-0 bottom=at supports;(in).
Slight overdemand (3%)
This section FAILS the design check considered OK. Note 25 psf
WARNING:This section violates the following design criteria:Deflection
snow load used.
Page 5 of 32
r�T T v Title: Rev:
1 lti-�iT 1 Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date.
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN
BM2 WoodWorks®Sizer 2019(Update 1) Page 2
Analysis vs.Allowable Stress and Deflection using NDS 2018:
Criterion Analysis Value Design Value Unit Analysis/Design
Shear fv = 60 Fv' = 170 psi fv/Fv' = 0.35
Bending(+) fb = 1274 Fb' = 1347 psi fb/Fb' = 0.95
Live Defl'n 0.47 = L/468 0.60 = L/360 in 0.77
Total Defl'n 0.93 = L/233 0.91 = L/240 in 1.03
Additional Data:
FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC#
Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2
Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2
Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - -
E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3
Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3
CRITICAL LOAD COMBINATIONS:
Shear : LC $2 = D+Lr
Bending(+): LC #2 = D+Lr
Deflection: LC d3 = D+S (live)
LC 13 = D+S (total)
Bearing : Support 1 - LC 13 = D+S
Support 2 - LC 13 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
V max = 2836, V design = 2513 lbs; M(+) = 12867 lbs-ft
El = 1115.29e06 lb-in"2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection - 1.5 dead + "live"
Lateral stability(+) : Lu = 2.00' Le = 4.13' RB = 4.3
Design Notes:
1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National
Design Specification(NDS 2018),and NDS Design Supplement.
2.Please verify that the default deflection limits are appropriate for your application.
3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
Page 6 of 32
TRI-CITY Title: Rev:
Structural Calculations 1
A ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
COMPANY PROJECT
di WoodWorks'
July 2,2020 09:17 BM3
Design Check Calculation Sheet
WoodWorks Sizer 2019(Update 1)
Loads:
Load Type Distribution Pat- Location [ft] Magnitude Unit
tern Start End Start End
Roof D Dead Full Area 15.00(11.00') psf
Roof Lr Roof live Full Area 20.00(11.00') psf
Roof S Snow Full Area 25.00(11.00') paf
Self-weight Dead Full UDL 15.0 pif
Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in) :
13.604' {
0' 13.429'
Unfactored:
Dead 1223 1223
Snow 1871 1871
Roof Live 1496 1496
Factored:
Total 3094 3094
Bearing:
Capacity
Beam 5156 5156
Des ratio
Beam 0.60 0.60
Load comb #3 #3
Length 1.50 1.50
Min req'd 0.90 0.90
Cb 1.00 1.00
Cb min 1.00 1.00
Timber-soft,D.Fir-L,No.1,6x12(5-1/2"x11-1/2")
Supports:All-Hanger
Total length:13.6';Clear span:13.354';Volume=6.0 cu.ft.;Beam or stringer
Lateral support:top=2'-0 bottom=at supports;(in);
This section PASSES the design code check
Analysis vs.Allowable Stress and Deflection using NDS 2018:
Criterion Analysis Value Design Value Unit Analysis/Design
Shear fv = 54 Fir' = 170 psi fv/Fv' = 0.32
Bending(+) fb = 893 Fb' = 1347 psi fb/Fb' = 0.66
Live Defl'n 0.18 = L/893 0.45 = L/360 in 0.40
Total Defl'n 0.36 - L/450 0.67 - L/240 in 0.53
Page 7 of 32
TRI-CITY Title: Rev:
Structural Calculations 1
Ait ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN
BM3 WoodWorks®Slzer2019(Update 1) Page 2
Additional Data:
FACTORS: F/E(psi) CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC4
Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2
Fb'+ 1350 1.00 1.00 1.00 0.998 1.000 - 1.00 1.00 1.00 - 2
Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - -
E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3
Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3
CRITICAL LOAD COMBINATIONS:
Shear : LC 42 = D+Lr
Bending(+): LC 02 = D+Lr
Deflection: LC 43 = D+S (live)
LC 93 = D+S (total)
Bearing : Support 1 - LC 43 = D+S
Support 2 - LC 43 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ABD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
V max = 2686, V design = 2288 lbs; M(+) = 9017 lbs-ft
EI - 1115.29e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection - 1.5 dead + "live"
Lateral stability(+): Lu = 2.00' Le = 4.13' RB = 4.3
Design Notes:
1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2018),the National
Design Specification(NDS 2018),and NDS Design Supplement.
2.Please verify that the default deflection limits are appropriate for your application.
3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
Page 8 of 32
. ,A
Title: Rev: �
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
1.2. Footings
Pa := 65001bf Applied load
Sallow := 1500psf Allowable soil bearing
Pa
1req := = 4.333ft` Required bearing area
Sallow
:= J4Areq
= 28.18 i in Required footing diameter
D7eq
T
Dfe — 5.5in
depthfeq:= q 2 = 11.343 in Footing depth required (for strength, not frost depth)
Page 9 of 32
Title: Rev'.
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2. Lateral Calculations
The only lateral element affected by the addition is the first floor wall supporting the covered patio.
2.1. House
2.1.1. Wind Loads
WIND LOADING
In accordance with ASCE7-10
Using the directional design method
Teses calculation venbn 2.1.06
z
8
S
I4 600- j4 600 1.1
Ilan Elevation
Building data
Type of roof Hipped
Length of building b=60.00 ft
Width of building d=60.00 ft
Height to eaves H=20.00 ft
Pitch of main slope ao=24.0 deg
Pitch of gable slope rroo=24.0 deg
Mean height h=26.68 ft
General wind load requirements
Basic wind speed V=97.0 mph
Risk category II
Velocity pressure exponent coef(Table 26.6-1) Kn=0.85
Exposure category(cl 26.7.3) c
Enclosure classification(c1.26.10) Enclosed buildings
Internal pressure coef eve(Table 26.11-1) =0.18
Internal pressure coef—ve(Table 26.11-1) GCo n=-0.18
Gust effect factor GI=0.85
Minimum design wind loading(c1.27.4.7) pr.=8 IbHtr
Topography
Topography factor not significant Ka=1.0
Velocity pressure equation q=0.00256 v Ku o Ka x Ks v V'x lest/mph,
Velocity pressures table
z(ft) K:(Table 27.3-1) q:(psi)
15.00 0.85 17.40
20.00 0 90 18.43
26.68 0.95 19.52
Peak velocity pressure for internal pressure
Peak velocity pressure—internal(as roof press.) q i=19.52 psf
Page 10 of 32
� ., Title: Rev.
TRI-CITY Structural Calculations 1
A . ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Pressures and forces
Net pressure P=q•G x Cs.-qi x GC.
Net force F.=p a Am
Roof load case 1-Wind 0,GCp 0.1 B,sr.
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cr. pressure qo P Aar F.
(ft) 6101 (psi) (ff') (kids)
A(-ve) 26.68 -0.30 19.52 -8.46 985.17 -8.33
B(-ve) 26.68 -0.60 19.52 -13.47 985.17 -13.27
C(-ve) 26.68 -0.90 19.52 -18.45 194.77 -3.59
D(-ve) 26.68 -0.90 19.52 -18.45 584.32 -10.78
E(-ve) 26.68 -0.50 19.52 -11.81 1142.94 -13.50
F(-ye) 26.68 -0.30 19.52 -8.49 48.31 -0.41
Total vertical net force F..._-45.57 kips
Total horizontal net force F..,=2.01 kips
Walls load case 1-Wind 0,GC.,0.18,-cr.
Ref. Eat pressure Peak velocity Net pressure Area Net force
Zone height coefficient car pressure*, p Aar F.
(ft) (Ps) (psf) (ffs) (klps)
A. 15.00 0.80 17.40 8.32 900.00 7.49
Ar 20.00 0.80 18.43 9.02 300.00 2.70
-B 26.68 -0.50 19.52 -11.81 1200.00 -14.17
C 26.68 -0.70 19.52 -15.13 1200.00 -18.15
D 26.68 -0.70 19.52 -15.13 1200.00 -18.15
Overall loading
Projected vertical plan area of wall A-.o=b.H=1200.00 fly
Projected vertical area of roof A...-,o=b a d12 a tan(no)-(d2 a lan(aa))•I tan(asa)=400.71 1P
Minimum overall horizontal loading Faara v.=p.,.a Awn_.o+p,,,;,_,a Arra_.o=22.41 kips
Leeward net force F.=F.,»=-142 kips
Windward net force F.=F.,m,_.+F..r s=10.2 kips
Overall horizontal loading F...w=max(F.-F.+F.n,Fwa>w_,m)=26.4 kips
Roof load case 2-Wind 0,GC,.-0.18,-0c..
Ref. Ext pressure Peek velocity Net pressure Ana Net force
Zone height coefficient cr. pressure qr p Are F.
(ft) (pat) (pen (1P) (kips)
A(+ve) 26.68 0.19 19.52 6.61 985.17 6.51
B(+ve) 26.68 -0.60 19.52 -6.44 985.17 -6.35
C(+ve) 26.68 -0.18 19.52 0.53 194.77 0.10
D(+ve) 26.68 -0.18 19.52 0.53 584.32 0.31
E(+ve) 26.68 -0.18 19.52 0.53 1142.94 0.60
F(+ve) 26.68 -0.18 19.52 0.53 48.31 0.03
Total vertical net force F.,.=1.10 kips
Total horizontal net force F.n=6.29 kips
Page 11 of 32
'', 1 RI-C1 1 1 Structural Calculations 1eV
A ` ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Walls load case 2-Wind 0,GCp-0.18,-0cn.
•
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cm pressure q.. p Amr F.
•
(ft) (Psi) (psi) Iftr) (kips) '
Al 15.00 0.80 17.40 15.35 900.00 13.81
Az 20.00 0.80 18.43 16.04 300.00 4.81
B 26.68 -0.50 19.52 -4.78 1200.00 -5.74
C 28.88 -0.70 19.52 -8.10 1200.00 -9.72
D 26.68 -0.70 19.52 -8.10 1200.00 -9.72
Overall loading
Projected vertical plan area of wall A..n_.,=b.H=1200.00 ftz
Projected vertical area of roof A..._.1).b x d/2.lan(ca)-(d/2 x tan(rm))21 tan(non)=400.71 ft,
Minimum overall horizontal loading F...a..m.=p....A...w-o+p,,,r,,.A.w,_r a=22A1 klps
Leeward net force F.=F..ee=-5.7 kips
Windward net force F.=F.,.a_,+F....._2=18.6 kips
Overall horizontal loading Fee =max(F.-F+F.n,F..mi m,)=29.8 kips
Roof load case 3-Wind 90,GCp 0.18,Kq
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient or Pressure q, p A... F.
(ft) (Psfl Iasi) (W) (kips)
A(-ve) 26.68 -0.30 19.52 -8.48 985.17 -8.33
B(-ve) 26.68 -0.60 19.52 -13.47 985.17 -13.27
C(-ve) 26.68 -0.90 19.52 -18.45 194.77 -3.59
D(we) 26.68 -0.90 19.52 -18.45 564.32 -10.78
E(-ve) 26.68 -0.50 19.52 -11.81 1142.94 -13.50
_F(-ve) 26.68 -0.30 19.52 -8.49 48.31 -0.41
Total vertical net force F.,.-45.57 kips
Total horizontal net force F..=2.01 kips
Walls load case 3-Wind 90,GCp 0.16,-e,.
Ref. Ext pressure Peak velocity Net pressure Arse Net force
Zone height coefficient cr. pressure q, p A.. Fw
(it) (psi) (p■f) (ft') (kips)
Al 15.00 0.80 17.40 8.32 900.00 7.49
Az 20.00 0.80 18.43 9.02 300.00 2.70
B 26.88 -0.50 19.52 -11.81 1200.00 -14.17
C 26.68 -0.70 19.52 -15.13 1200.00 -18.15
D 26.68 -0.70 19.52 -15.13 1200.00 -18.15
Overall loading
Projected vertical plan area of wall Awn_.,o=d.H=1200.00 8'
Projected vertical area of roof A..._i_w=de/4.tan(no)=400.71 ftr
Minimum overall horizontal loading F,,..i v=p.„_,.Awn_»eo+prow_,.Awa_,eo=22A1 kips
Leeward net force F,=F...e=-14.2 kips
Windward net force F.=F.,n_,+F.++_a=10.2 kips
Overall horizontal loading RV.w=max(F.-F.+F..,F...w_Mn)=28.4 kips
Page 12 of 32
Title: Rev:
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard- Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Roof load case 4-Wind 90,GC.-0.18,+or.
Ref. Est pressure Peak velocity Net pressure Area Net force
Zone height coefficient ca pressure qv p A... F.
176 (P46 (Pet (ft9 (MP*)
A(+ve) 26.68 0.19 19.52 6.61 955.17 6.51
B(+ve) 26.68 -0.60 19.52 -6.44 985.17 -6.35
C(+ve) 26.68 -0.18 19.52 0.53 194.77 0.10
D(+ve) 26.68 -0.18 19.52 0.53 554.32 0.31
E(+ve) 26.68 -0.18 19.52 0.53 1142.94 0.60
F(eve) 26.68 -0.18 19.52 0.53 48.31 0.03
Total vertical net force F...=1.10 klps
Total horizontal net force F..n=5.23 kips
Walls load case 4-Wind 90,GC..4.18,+c,.
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient Cn. pressure go P Ana F.
(ft) last) (psI (ft') (kips)
A. 15.00 0.80 17.40 15.35 900.00 13.81
A. 20.00 0.80 18.43 16.04 300.00 4.81
B 26.68 -0.50 19.52 -4.78 1200.00 -5.74
C 26.68 -0.70 19.52 -8.10 1200.00 -9.72
D 26.68 -0.70 19.52 -8.10 1200.00 -9.72
Overall loading
Protected vertical plan area of wall A,..._.eo=d x H=1200.00 fP
Projected vertical area of roof A..._r_ao=dT14 x tan(aa)=400.71 IV
Minimum overall horizontal loading F.....:.=p..l.x A..t cto+prnv r a A,.n_1_00=22.41 kips
Leeward net force F,=F..e=4.7 kips
Windward net force F.=F..w_r+F.ee 2=18.8 kips
Overall horizontal loading F.nw=max(F.-Fi+F.n,Sae,..,)=29.6 kips
Page 13 of 32
Title: Rev:
TRI—CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
A2
At N
60 ft
Windward face
C o B o
N N
60ft-- ►{ 60ft �I
Side face Leeward face
Page 14 of 32
Title: Rev:
(� TRI-CITY Structural Calculations 1
~t` ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
111 Pr
/
A2
A, CD
4_
60ft r
Windward face
1a= c
C o B o
N N
i
N 60 ft ► H 60 ft —ol
Side face Leeward face
Page 15 of 32
•
Title: Rev:
�T+�R��I+7-�C7�I�TDY� Structural Calculations 1
ENGINEERS EERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.1.2. Seismic Loads
SEISMIC FORCES(ASCE 7.10)
Tedia raiNeeon version 3.1.00
Site parameters
Site class D
Mapped acceleration parameters(Section 11.4.1)
at short period Ss=0.95
al 1 sec period S+=0.42
Site coefficientat short period(Table 11.4-1) F.=1.120
at 1 sec period(Table 11.4-2) F.=1.580
Spectral response acceleration parameters
at short period(Eq.11.4-1) Sus=F.=Ss=1.064
al 1 sac period(Eq.11.4-2) Su,=F.x S,=0.664
Design spectral acceleration parameters(Sect 11.4.4)
at short period(Eq.11.4-3) Sus= 2I 3=Sus=0.709
al 1 sec period(Eq.11.4-4) Sc,=2/3 x Stn=0.442
Seismic design category
Risk category(Table 1.5-1) II
Seismic design category based on short period response acceleration(Table 11.6-1)
D
Seismic design category based on 1 sec period response acceleration(Table 11.6-2)
D
Seismic design category D
Approximate fundamental period
Height above base to highest level of building hi,=35 ft
From Table 12.8.2:
Structure type All other systems
Building period parameter C, C.=0.02
Building period parameter s x=0.75
Approximate fundamental period(Eq 12.8.7) T.=C.x(h.)'=lsec/(1flp=0.288 sec
Building fundamental period(Sect 12.8.2) T=T.=0.288 sec
Long-period transition period T.=12 sec
Seismic response coefficient
Seismic force-resisting system(Table 12.2-1) A.Bearing_Wall_Systems
15.Light-frame(wood)walls sheathed with wood structural panels
Response modification factor(Table 12.2-1) R=6.5
Seismic knportance factor(Table 1.5.2) I.=1.000
Seismic response coefficient(Sect 12.8.1.1)
Calculated(Eq 12.8-3) C.a,.=Sas I(R/I.)=0.1091
Maximum(Eq 12.8-3) C..r.=Sin I((T/1 sec)_(R I le))=0.2365
Minimum(Eq 12.8-5) C....=max(0.044=Sos=10.01)=0.0312
Seismic response coefficient C.=0.1091
Seismic base shear(Sect 12.8.1)
Effective seismic weight of the structure W=250.0 kips
Seismic response coefficient C.=0.1091
Seismic base shear(Eq 12.8-1) V=C.=W=27.3 kips
Page 16 of 32
•
Title: Rev:
TRI-CITY Structural Calculations 1
A ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.2. Covered Porch
2.2.1. Wind Loads
WIND LOADING
In accordance with ASCE7-10
Using the directional design method
Tedds ralcSat on version 2.106
N
I-15511 ci r 22f1 sl
Plan Elevation
Building data
Type of roof Gable free
Length of building b=15.50 ft
Width of building d=22.00 ft
Height to eaves H=10.00 ft
Pitch of roof ao=24.0 deg
Mean height h=12.45 ft
Wind flow Clear
General wind load requirements
Basic wind speed V=97.0 mph
Risk category II
Velocity pressure exponent coef(Table 26.6-1) Kn=0.85
Exposure category(d 26.7.3) C
Enclosure classification(c1.26.10) Open buildings
Internal pressure coef+ve(Table 26.11-1) GCpi p=0.00
Internal pressure coat—ve(Table 26.11-1) GCpL n=0.00
Gust effect factor G=0.85
Topography
Topography factor not significant Kn=1.0
Velocity pressure
Velocity pressure coefficient(T.27.3-1) K:=0.85
Velocity pressure qn=0.00256.K,a Ka a Ke a V2 a 1psflmph2=17.4 psf
Peak velocity pressure for internal pressure
Peak velocity pressure—internal(as roof press.) qi=17.40 psf
Pressures and forces
Net pressure p=qn<G a Cry
Net force F,.=p•Are
Page 17 of 32
• .
. ,
Title: Rev:
A TART I7-7C7�hTnY� Structural Calculations 1
ENGINEERS Gil V 1 LRS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Minimum design wind loading(d.27A.7) pmn_r=16 lb/fix
Roof load case 1-Wind 0-Loadcase A
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient pressure qe p M, Fr
(ft) cr (pet) _ (Pet) (ft'I (kips)
1(eve) 12.45 1.14 17.40 18.86 186.64 3.15
2(eve) 12.45 0.14 17.40 2.07 186.64 0.39
Total vertical net force F..v=3.23 kips
Total horizontal net force Fen=1.12 kips
Minimum loading
Projected vertical area of roof Amu o=b x dl2 x tan(ov)=75.91 ft'
Minimum overall horizontal loading Fv.eihoen=prier.,x Aran.o=1.21 kips
Roof load case 2-Wind 0-Loadcase B
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient pressure co p Are F.
(ft) ca (pet) (pat) (ft9 (hips)
1(eve) 12.45 -0.10 17.40 -1.48 186.64 -0.28
2(eve) 12.45 -0.82 17.40 -12.13 186.64 -2.26
Total vertical net force F..._-2.32 kips
Total horizontal net force Fa.=0.81 kips
Minimum loading
Projected vertical area of roof Av.n_,o=b x d/2 x tan(oo)=75.91 ft'
Minimum overall horizontal loading F..w_m.=per,x A.vn_,_o=1.21 kips
Roof load case 3-Wind 90-Loadcase A
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient pressure co p A., F.
(ft) cc (Psf) (pef) (ft') (kips)
1(eve) 12.45 -0.80 17.40 -11.83 299.79 -3.55
2(eve) 12.45 -0.60 17.40 -8.88 73.48 -0.65
Total vertical net force F..v=-3.84 kips
Total horizontal net force Fen=0.00 kips
Minimum loading
Projected vertical area of roof Av.e_r w=0.00 0'
Minimum overall horizontal loading Fvee.an=peek_.x An.n.so=0.00 kips
Roof load case 4-Wind 90-Loadcase B
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient pressure qn p Ant F.
(ft) c= (psi) (pal) (19 (kips)
1(+ve) 12.45 0.80 17.40 11.83 299.79 3.55
2(eve) 12.45 0.50 17.40 7.40 73.48 0.54
Total vertical net force F..,a 3.74 kips
Total horizontal net force NO=0.00 kips
Minimum loading
Projected vertical area of roof Av«r_.co=0.00 ft'
Minimum overall horizontal loading F..eis v:,=pine_,x A....so=0.00 kips
Page 18 of 32
•
Title: Rev:
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
1
w. �mmav
Page 19 of 32
% Title: Rev:
7�T 7-�7�TY Structural Calculations 1
ENGINEERS GI VEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard -Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.2.2. Seismic Loads
SEISMIC FORCES(ASCE 7-10)
Terkb eaoJa ion version 3.1.00
Site parameters
Site class o
Mapped acceleration parameters(Section 11.4.1)
el short period Ss=0.95
al 1 sec period Sr=0.42
Site ccefficientat short period(Table 11.4-1) F.=1.120
al 1 sec period(Table 11.4-2) F.=1.580
Spectral response acceleration parameters
at short period(Eq.11.4-1) Sus=F.x Ss=1.064
al 1 sec period(Eq.11.4-2) Sar=F.x Sr=0.664
Design spectral acceleration parameters(Sect 11.4.4)
et short period(Eq.11.4-3) Sos= 2/3 a Sus=0.709
et 1 sec period(Eq.11.4-4) Sor=2/3 x Shut=0.442
Seismic design category
Risk category(Table 1.5-1) II
Seismic design category based on shod period response acceleration(Table 11.6-1)
D
Seismic design category based on 1 sec period response acceleration(Table 11.6-2)
D
Seismic design category D
Approximate fundamental period
Height above base to highest level of budding h.=15 ft
From Table 12.8-2:
Structure type All other systems
Building period parameter C, Ci=0.02
Building period parameter s x=0.75
Approximate fundamental period(Eq 12.8-7) T.=Cr a(NY a 1sec I(1ft)'=0.152 sec
Building fundamental period(Sect 12.8.2) T=T.=0.152 sec
Lang-period transition period Tr=12 sec
Seismic response coefficient
Seismic force-resisting system(Table 12.2-1) A.Bearing_Wall_Systems
15.Light-frame(wood)walls sheathed with wood structural panels
Response modification factor(Table 12.2-1) R=6.5
Seismic importance factor(Table 1.5-2) I.=1.000
Seismic response coefficient(Sect 12.8.1.1)
Calculated(Eq 12.8-3) C.mr=Sos/(R/I.)=0.1091
Maximum(Eq 12.8-3) Cr aria=Sol/((T/1 sec)x(R/1.))=0.4465
Minimum(Eq 12.8-5) C..a.=max(0.044 x Sos x 14.01)=0.0312
Seismic response coefficient Cr=0.1091
Seismic base shear(Sect 12.8.1)
Effective seismic weight of the structure W=5.5 kips
Seismic response coefficient Cr=0.1091
Seismic base shear(Eq 12.8-1) V=C.x W=0.6 kips
Page 20 of 32
Tille:/\
Rev:
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.3. Lateral Load Summary
Wind Loads -House
Net Roof Wind Pressure proof=5.5 psf
Roof Tributary Area Aroof=495 sf
Net Wall Wind Pressure pwau=21 psf
Wall Tributary Area Awau=480 sf (bottom 4 ft not considered for shear load on wall)
Wind Shear Load WH= 12.8 kip
Seismic Loads -House
Seismic Base Shear VH= 17 kip
Seismic Shear Load EH=8.5 kip
Wind Loads—Covered Patio
Wind Shear Load WP= 1.3 kip
Seismic Loads—Covered Patio
Seismic Base Shear VP=0.6 kip
Seismic Shear Load Ep=0.6 kip (posts are not credited for resistance to lateral load)
Total Unfactored Shear Loads
Total Wind Shear Load W= 14.1 kip
Total Seismic Shear Load E= 9.1 kip
Page 21 of 32
Title: Rev:
.74 TRI-CITY Structural Calculations 1
AA ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.4. Shear Wall Capacity
2.4.1. Exception Check
2019 OSSC, Ch.34 adopts the 2015 IEBC with modifications.
Exception to 2015 IEBC 402.4 States:
Exception:Any existing lateral load-carrying structural element whose demand-capacity ratio with the addition
considered is no more than 10 percent greater than its demand-capacity ratio with the addition ignored shall be
permitted to remain unaltered. For purposes of calculating demand-capacity ratios. the demand shall consider
applicable load combinations with design lateral loads or forces in accordance with Sections 1609 and 1613 of
the International Building Code. For purposes of this exception, comparisons of demand-capacity ratios and
calculation of design lateral loads,forces and capacities shall account for the cumulative effects of additions and
alterations since original construction.
Exception Check
DCR of Existing Wall DCRo=0.99 (see shear wall calculations below)
DCR of Existing Wall with Patio DCRi = 1.07 (see shear wall calculations below)
% Increase Required 8%
% Increase Allowable 10% Exception Applies
Page 22 of 32
Title: Rev.
ENGINEERS Structural Calculations 1
. L d V GIN ERRS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.4.2. Existing Wall
Note: Code minimum construction requirements assumed.
WOOD SHEAR WALL DESIGN INDSI
In accordance with ND52015 allowable stress design and the perforated shear wall method
lades nlculelion version 1.2.04
Panel details
Structural wood panel sheathing on one side
Panel height h=10 ft
Panel length b=46 ft
a 1444iasisi4444i44444isiisiiii444444iii4iia4444iiiitaliiili444ii44ifGffii4444444i4Hisi4
11,
1.17111
i iir 1,111
I?I I Li Iib
I
Panel opening details
Width of opening w. =4 ft
Height of opening hot=5 ft
Height to underside of lintel over opening 6l=6.67 ft
Position of opening Poi=4.8 ft
Width of opening wow=6 ft
Height of opening hoz=6.67 ft
Height to underside of lintel over opening b2=6.67 ft
Position of opening Pm=12 ft
Width of opening ww=6.25 ft
Height of opening hw=5 ft
Height to underside of lintel over opening Im=6.67 ft
Position of opening Pw=23 ft
Total area of wall A=hob-woo a ho,-vox hoz-wwxhw=366.73 ft'
Panel construction
Nominal stud size 2"x 6"
Dressed stud size 1.5"x 5.5"
Cross-sectional area of studs A.=8.26 in'
Stud spacing $=16 in
Nominal end post size 2 x 2"x 6"
Dressed end post size 2 x 1.5'x 5.5"
Cross-sectional area of end posts A.=16.5 in°
Hole diameter Dia=1 in
Net cross-sectional area of end posts M=13.5 ire
Nominal collector size 2 x 2"x 6"
Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry
Temperature 100 degF or less
Vertical anchor stiffness k.=30000 lb/in
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species,grade and size classification Douglas Fir-Larch,not grade,2"&wider
Page 23 of 32
ATitle: Rev:
Structural Calculations 1
\ TRI-CITY ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard —Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Specific gravity G=0.50
Tension parallel to grain F,=575 lb/in'
Compression parallel to grain F.=1350 Ib/in'
Modulus of elasticity E=1600000 lb/in'
Minimum modulus of elasticity Fmk,=580000 lb/in'
Sheathing details
Sheathing material 7/16"wood panel oriented strandboard sheathing
Fastener type Bd common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels
Nominal unit shear capacity for seismic design v.=min(520 plf,1740 plf)=520 lb/ft
Nominal unit shear capacity for wind design e, min(730 plf,2435 p0)=730 Ib/6
Apparent shear wall shear stiffness G.=15 kips/in
Loading details
Dead load acting on top of panel D=165 Ib/ft
Floor live load acting on top of panel Lr=40 Ib/ft
Roof live load acting on top of panel L=60 lb/ft
Self weight of panel Su=12 IMP
In plane wind load acting at head of panel W=12800 lbs
Wind load serviceability factor
In plane seismic load acting at head of panel Es=8500 lbs
Design spectral response accel.par.,short periods Sea=0.95
From IBC 2015 c1.1605.3.1 Basic load combinations
Load combination no.1 D+0.6W
Load combination no.2 D+0.7E
Load combination no.3 D+0.45W+0.75L,+0.75(L,or S or R)
Load combination no.4 D+0.525E+0.75L,+0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor-Table 2.3.2 Co=1.60
Size factor for tension-Table 4A CFI=1.30
Size factor for compression-Table 4A Cfc=1.10
Wet service factor for tension-Table 4A Cie=1.00
Wet service factor far compression-Table 4A C..=1.00
Wet service factor for modulus of elasticity-Table 4A
Cae=1.00
Temperature factor for tension-Table 2.3.3 Cu=1.00
Temperature factor for compression-Table 2.3.3
Cc=1.00
Temperature factor for modulus of elasticity-Table 2.3.3
Cs=1.00
Incising factor-d.4.3.8 G=1.00
Buckling stiffness factor-d.4.4.2 Cr=1.00
Adjusted modulus of elasticity Eon=E s x Cue.Cs.C..CT=580000 psi
Critical buckling design value F.s=0.822 x Erne'I(h I d)'=1002 psi
Reference compression design value Fe=F.x Co x Cur.x Cs x Cry.G=2376 psi
For sawn lumber c=0.8
Column stability factor-eqn.3.7-1 Cr=(1+(Fee/Fe))/(2xc)-11([(1+(Fur/Fe))1(2 x el?-(Re/F5)I
c)=0.38
Page 24 of 32
ITY Structural Calculations 1eV TRI-C
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard—Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio 3.5
Perforated wall length b,=4.6 ft
Shear wall aspect ratio h I b,=2.174
Perforated wall length ba=34 ft
Shear wall aspect ratio h l bs=2.941
Perforated wall length ba=5 ft
Shear wall aspect ratio h I bo=2
Perforated wall length b.=16.75 ft
Shear wall aspect ratio h I b.=0.597
Shear capacity adjustment factor—cl.4.3.3.5
Sum of perforated shear wall lengths EL=b.x 2 x bs/h+bs x 2 x b./h+bu+b.=27.19 ft
Total length of perforated shear wall La=b.+Wet+bt+W.r+bs+Wm+b.=46 ft
Total area of openings A.=wsi x h..+wax x hos+wet a het=91.27 ftr
Sheathing area ratio(eqn.4.3-6) r=11(1+A.I(h x EL)).0.749
Shear capacity adjustment factor(eqn.4.3-5) Co=0.843
Perforated shear wall capacity
Maximum shear force under wind loading V . =0.6 x W=7.68 kips
Shear capacity for wind loading V.=v+x Co a EL/2=6.366 kips
V..=./V.=0.918
PASS-Shear capacity for wind load exceeds maximum shear force
Maximum shear force under seismic loading V.se,=0.7 x Es=5.95 kips
Shear capacity for seismic loading V.=vs a Co a EL/2=5.959 kips
Vs m../Vs=0.998
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Load combination 6
Shear force for maximum tension V=0.7 a E.=5.95 kips
Axial force for maximum tension P=(0.6 a(0+S.,a h)-0.7 x 0.2 a See a(D+Ste a h))x b/2=3.081
kips
Maximum tensile force in chord T=V a h I((C,a EL))-P=-0.465 kips
Maximum applied tensie stress k=T I A=t_-34lbIinN
Design tensile stress Fi=F.x Co x Cs.x Cs a Cn a G=1196 lbilnr
k I F.=-0.029
PASS.Design tensile stress exceeds maximum applied tensile stress
Load combination 1
Shear force for maximum compression V=0.6 x W.7.68 kips
Axial force for maximum compression P=(CO+Sex h))x s 12=0.19 kips
Maximum compressive force in chord C=V a h l((C.a EL))+P=3.541 kips
Maximum applied compressive stress f=CIA.=215 Ib/In'
Design compressive stress F.=F.a Cox Dec a Cx a Cr.x C.•C. =894 lb/in,
f.I =0.240
PASS-Design compressive stress exceeds maximum applied compressive stress
Page 25 of 32
Title: Rev:
/'11, TRI—CITY Structural Calculations
Aai ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard— Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Collector capacity
Cased.aoM Force aWnn
J1
ae
s es t
d1 i
.0a
Collector seismic design force factor Fw,=1
Maximum shear force on wall Vm..=max(Fcoa x V.mo,V.m.,)=7.68 kips
Uniform shear applied to wall v.= I((C.x EL))=335.1 plf
Shear resisted by wall segments se=v.x b!(b1+be+W.I.b.).518.1 plf
Maximum force in collector P.s=3.066 kips
Maximum applied tensile stress k=Pam/(2 x A.)=186 lb/ina
Design tensile stress F.=Fr x Cox Coe a C.a Cf.x C=1196 Ib/in'
f. Fr=0.155
PASS-Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress 1.=P,mx I(2 x A.)=186 Iblin5
Column stability factor Cr=1.00
Design compressive stress F.'=F.x Co Csc x Cx.Cr.x G x Cr=2376 lb/inw
h/F.'=0.078
PASS•Design compressive stress exceeds maximum applied compressive stress
Wind load deflection
Design shear force V..=fw.w x W=12.8 kips
Deflection limit Av.As.=h/240=0.5 in
Induced unit shear w:.,,..=Vex I(C..£L.)=558.48 lb/ft
Anchor tension force Ta=max(0 kips,vn._.,..x h-0.6 x(D•Sw x h)x b/2)=1.652 kips
Shear wall deflection—Eqn.4.3-1 fi.,m=2 x Va m..a ho/(3 x E x A.x EL.)+va.-.mx a h((G.)+h
(k.x£L)=0.399 in
26,4e.r..a 0.798
PASS-Shear wall deflection Is less than deflection limit
Seismic deflection
Design shear force Va.=Eq=8.5 kips
Deflection limit A..r.,=0.020 x h=2.4 in
Induced unit shear vw<_„,..=Va.!(C.x£L)=370.86 Iblfl
Anchor tension force Ta=max(0 kips,va._mu x h-(0.8-0.2 x Sos)x(D+SM x h)x b/2).
1.021 kips
Shear wall elastic deflection—Eqn.4.3-1 6....=2 a vr._m..a ha/(3 x E x A.x£L)+va._m..x h/(G.)+h a Ts!
(k.x£L)=0.264 in
Deflection amputation factor Ca,.4
Seismic Importance factor I.=1
Page 26 of 32
Title: Rev:
A TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Amp.seis.deflection—ASCE7 Eqn.12.8-15 &..,.=Cm x&a.,./le=1.058 in
&»/4. =0.44
PASS•Shear wall deflection is less than deflection limit
Page 27 of 32
Title: Rev.
�T7�RS I-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
2.4.3. Existing Wall —With Patio
Note: Code minimum construction requirements assumed.
WOOD SHEAR WALL DESIGN(NOS)
In accordance with ND82015 allowable stress design and the perforated shear wall method
Tema celujaliun version 12.04
Panel details
Structural wood panel sheathing on one side
Panel height h=10 ft
Panel length b=46 ft
ii14411 i44HiiiHihi4NtHfHH01441+1+141 444 14+14 434101ti{1i441401+iH1i1Hi4i4+4414
J k • r r
Panel opening details
Width of opening w",=4 ft
Height of opening hot=5 ft
Height to underside of lintel over opening l",=6.67 ft
Position of opening Po,=4.6 ft
Width of opening wm=6 ft
Height of opening he=6.67 ft
Height to underside of lintel over opening laz=6.67 ft
Position of opening Pot=12 ft
Width of opening ww=6.25 ft
Height of opening hw=5 ft
Height to underside of lintel over opening Iw=8.67 ft
Position of opening Pot=23 ft
Total area of wall A=h=b-we,x he,-ww x hoz-w3.hm=368.73 ft2
Panel construction
Nominal stud size 2"x 6"
Dressed stud size 1.5"x 5.5'
Cross-sectional area of studs A.=8.25 In2
Stud spacing s=16 in
Nominal end post size 2 x 2"x 6"
Dressed end post size 2 x 1.5'x 5.5"
Cross-sectional area of end posts A.=18.5 in2
Hole diameter Die=1 in
Net cross-sectional area of end posts A.=13.5 ins
Nominal collector size 2 x 2"x 6"
Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry
Temperature 100 degF or less
Vertical anchor stiffness ka=30000 lb/in
From NOS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species,grade and size classification Douglas Fir-Larch,no.2 grade,2"&wider
Page 28 of 32
�. Title: Rev
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard-Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Specific gravity G=0.50
Tension parallel to grain Fr=575 Ib/in2
Compression parallel to grain F.=13501bli&
Modulus of elasticity E=1600000 Ibline
Minimum modulus of elasticity E =580000 Ib/in'
Sheathing details
Sheathing material 7/16"wood panel oriented strandboard sheathing
Fastener type Bd common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels
Nominal unit shear capacity for seismic design v.=min(520 plf,1740 plf)=520 lb/ft
Nominal unit shear capacity for wind design w.=min(730 pIt,2435 plf)=730 Ib/ft
Apparent shear wall shear stiffness G.=15 kipstin
Loading details
Dead load acting on top of panel D=185 lb/ft
Floor live load acting on top of panel la=40 lbR1
Roof live load acting on top of panel L.=60 16/ft
Self weight of panel Sr=12 Ibffe
In plane wind load acting at head of panel W=14100 lbs
Wind load serviceability factor for....=1.00
In plane seismic load acting at head of panel En=9100 lbs
Design spectral response accel.par.,short periods Sos=0.95
From IBC 2015 01.1605.3.1 Basic load combinations
Load combination no.1 D+0.6W
Load combination no.2 0+0.7E
Load combination no.3 D+0.45W+0.75Lr+0.75(Lr or S or R)
Load combination no.4 D+0.525E+0.75Lr+0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor-Table 2.3.2 Co=1.60
Size factor for tension-Table 4A Cr,=1.30
Size factor for compression-Table 4A Crc=1.10
Wet service factor for tension-Table 4A Ca=1.00
Wet service factor for compression-Table 4A Cu.=1.00
Wet service factor for modulus of elasticity-Table 4A
Cam=1.00
Temperature factor for tension-Table 2.3.3 Cn=1.00
Temperature factor for compression-Table 2.3.3
Cs=1.00
Temperature factor for modulus of elasticity-Table 2.3.3
Cs=1.00
Incising factor-ct.4.3.8 =1.00
Buckling stiffness factor-ct.4.4.2 Cr=1.00
Adjusted modulus of elasticity En..=Ewe.Cus•Ca.G.Cr=580000 psi
Critical buckling design value Fes=0.822 x Elm.'/(h I ay.1002 psi
Reference compression design value Fe=Fe.Cox Cee x Cc x Cr,.C =2376 psi
For sawn lumber c=0.8
Column stability factor-egn.3.7-1 CP=(1+(F.sfFd))/(2cc)-v([l1+(Fr IF,:'))f(2 xc)]_-(Fc IF')I
c)=0.38
Page 29 of 32
Title: Rev:
��++7��R����I7��CI�TnnY�� Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio 3.5
Perforated wall length b+=4.6 ft
Shear wall aspect ratio h/b,=2.174
Perforated wall length ba=3.4 ft
Shear wall aspect ratio h I ba=2.941
Perforated wall length ba=5 ft
Shear wall aspect ratio h I ba=2
Perforated wall length b =16.75 ft
Shear wall aspect ratio h/ba=0.597
Shear capacity adjustment factor—c1.4.3.3.5
Sum of perforated shear wall lengths EL=b.x 2 x b.I h*ba+2 x b./h+ba+b.=27.19 ft
Total length of perforated shear wall La,=b,+vim+ba+wos+ba+woo+br=49 ft
Total area of openings Ao=wo.x h.,+wm x hox+woe x hoe=9127 Or
Sheathing area ratio(eqn.4.3-6) r=1/(1*Ax/(h x£L))=0.749
Shear capacity adjustment factor(eqn.4.3-5) Co=0.843
Perforated shear wall capacity
Maximum shear force under wind loading V..,a=0.6 x W=6.46 kips
Shear capacity for wind loading Vs)=vw x Co x£L/2=8.366 kips
Vw,,,=/Vw=1.011
FAIL-Shear capacity for wind load is less than maximum shear force
Maximum shear force under seismic loading V.nb=0.7 x Ea=6.37 kips
Shear capacity for seismic loading V.=v.x Co x£L/2=5.959 kips
V..xn.IV.=1.069
FAIL-Shear capacity for seismic load Is less than maximum shear force
Chord capacity for chords 1 and 2
Load combination 5
Shear force for maximum tension V=0.6 x W=8.46 kips
Axial force for maximum tension P=(0.6 x(D+Sw x h))x b/2=3.933 kips
Maximum tensile force in chord T=V a h/((Cox£L))-P=-0.242 kips
Maximum applied tensile stress k=T/An=-16 lb/tn'
Design tensile stress Ft'=F x Coo Cu,x Ce x Cn a G=1196 Ibfina
fIFi=-0.015
PASS-Design tensile stress exceeds maximum applied tensile stress
Load combination 1
Shear force for maximum compression V=0.6 x W=8.46 kips
Axial force for maximum compression P=((D+S.,x h))x a/2=0.19 kips
Maximum compressive force in chord C=V x hi((Cox IL)).P=3.881 kips
Maximum applied compressive stress f.=C l A.=235 Olin
Design compressive stress Fr'=Fes Coo C.=x Cs x Cr,x G x Co=894 Ibri n'
f./Fa=0.263
PASS-Design compressive stress exceeds maximum applied compressive stress
Page 30 of 32
•
A Title: Rev:
TRI-CITY Structural Calculations
ENGINEERS
f _L ��, Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard - Covered Porch
Richland, WA 99354 Originator: Date Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Collector capacity
Coattla am.Iptt Uepam Ikea;
34
21
OS 1.1
419
Collector seismic design force factor Foe=1
Maximum shear force on wall Vma=max(Fcr x V.mw V.,�..)=8.46 kips
Uniform shear applied to wall v.=V...I((Co x EL))=369.1 plf
Shear resisted by wall segments w=V.x b/(b1+1)21.133.b4)=570.7 plf
Maximum force in collector Pm=3.377 kips
Maximum applied tensile stress fi=P.c./(2 x A.)=205 Ibfin2
Design tensile stress Fi=Fa x Cox C.e x Cs x Cr.x C,=1196 Ib/In3
f/Fi=0.171
PASS-Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress f.=Posit(2 x A.)=205 ibfin3
Column stability factor CP=1.00
Design compressive stress Fd=Fc x Cox Cu.x Cx x Cr.x C x CP=2376 Ib/ns
fc I F.'=0.086
PASS-Design compressive stress exceeds maximum applied compressive stress
Wind load deflection
Design shear force Va.=fw..,,.x W=14.1 kips
Deflection limit Aw,.00 h/240=0.5 in
Induced unit shear w._m.,=Vw!(Cox EL)=615.2 IbM
Anchor tension force Ta=max(0 Mps,ya._m..x h-0.6 x(D•SM x h)x b/2)=2.219 kips
Shear wall deflection—Eqn.4.3-1 &.==2 x vaxm..x h3/(3 x E x A.x EL)+va.m..x h/(G.)+h x Ta I
(k.x EL).0.444 In
Ss../A.rP«=0.888
PASS-Shear wall deflection is less than deflection limit
Seismic deflection
Design shear force Vrx=Ea=9.1 kips
Deflection limit o.Jam=0.020 x h=2.4 in
Induced unit shear vasm.x=Vs!(C.x EL)=397.04 Iblft
Anchor tension force T.=max(0 kips,v.m..x h-(0.6-0.2 x Sus)x(D+Sw x h)x b/2)_
1.283 kips
Shear wall elastic deflection—Eqn.4.3-1 Sena=2 x Vas max h3/(3.E x A..EL)+V.._m..a h I(Ga)+h a To/
(k.x EL)=0.285 in
Deflection ampificalion factor Cm=4
Seismic importance factor I.=1
Page 31 of 32
Title: Rev:
TRI-CITY Structural Calculations 1
ENGINEERS Project:
2546 Van Giesen St 15115 SWE Danube Dr, Tigard — Covered Porch
Richland, WA 99354 Originator: Date: Checker: Date:
509.210.1010 Killian Emory, PE 8/26/2020 Max Elliott 8/26/2020
Amp.seis.deflection-ASCE7 EQn.12.8-15 8...=Css 5..,./6=1.139 in
56../4:yw=0.475
PASS-Shear wall deflection is less than deflection limit
•
Page 32 of 32