Loading...
Report ue202O- 00210 cr425 %�p WELCOME RAMP, INC. RECEIVE® AUG 24 2020 STRUCTURAL ANALYSIS CITY OF TIGARD BUILDING DJVIStO,N TABLE OF CONTENTS ITEM PAGES Design Criteria 1-3 Ramp System Design 4-23 Adjustable Legs 24-26 Alternate 7'-0" Landing Design 27-41 Planking—Manufacturer's Information 42-44 • 12327 PE OREGON �, 1141 1 I v. RUMS; DECEMEER ,_(121 • WELCOME RAMP CALCS-IBC 2018 Page 1 WELCOME RAMP, INC • STRUCTURAL ANALYSIS Ramp System Design Criteria and Analysis 1) Reference Design Criteria: a) International Building Code, 2018 Edition 2) Site Specific Criteria: a) Building Occupancy Classifications: II b) Vertical Loading: 100 psf for Landings, 300 lbs. concentrated loads for steps c) Horizontal Loading: i) Wind Loads: 135 mph(ultimate), Exposure B, Kz=0.85, Kzt=1.0; Design Wind Pressure=30 psf(At less than 15 feet above grade, IBC 2012, 1609.6.2)w/5' effective width = 30 lbs/leg ii) Seismic Loads: Sds= 1.50, S1=0.50, 1=1.0, R=3.25,Oo=2, Cd=3.25, Cs=0.462, w/62.5#DL/leg*0.462*2 =58#/leg iii) Pedestrian Traffic Load: 5'effective*100psf*1/12*1.5=63#/leg d) Soil Bearing: 1,500 psf, unless verified by Geotechnical Report or Building Official 3) Material Specifications: a) Aluminum: i) Handrail ASTM 6063-T5, 16 ksi, minimum yield strength ii) Structural ASTM 6061-T5, 35 ksi, minimum yield strength • b) Density 170 lbs. per cubic foot 4) Connectors: a) Bolts Grade 5 zinc-coated (Design),ASTM A-325 may be substituted. b) Screws #10x1.25" zinc plated Self-Tapping Screw(STS) c) Welding Per AWS D1.2 and size as shown on the drawings d) Sleeves Length of snug-fitting sleeves designed resist moment and shear of sleeved connection. 5) Design Basis: a) Each side of the assembly is a framed made rigid by either welding or assembling parts together in sleeves to resist movement. Base connections are a pinned condition. b) Each frame is connected together with landing or ramp frames and planking to distribute dead and live loads to the frames. Railing is added to the frame assembly. c) Landing Platforms are attached to buildings with Lag-bolts or SDS Screws. d) Basic Dead Load is 5 psf for frame, ramp & landing surfaces. 2 psf is added for railing. e) A 300 lb. lateral load is used in the design to simulate seismic,wind and pedestrian lateral loading for each frame (2 frames per unit, 600#per assembly).This results in an effective Design WELCOME RAMP CALCS-IBC 2018 Page 2 Cs for a 30-foot ramp and 5x10 platform of 0.5 and a design wind load of 30 psf without consideration for stress duration.Seismic and wind loads do not govern lateral loading for standard configurations.Standard platform lateral loading will be resisted by connections of platform to building. (3)5DS25300(OR 3/8"fb x 3" lag-bolts= 900#for each 5' platform section. Lateral loads of ramps and stair assemblies attached to the platforms will be resisted by the platforms. f) Anchorage for Asphalt and Concrete Substrate:Where requested by the Owner,anchorage of ramps and stairs to asphalt and concrete substrates will be done with drilled anchors.Asphalt substrate conditions will use (1) 'Bolt-Hold'SP-10 at each bottom bearing plate of last section of ramp and bottom of stair. Concrete substrate conditions will use (1) 'Simpson'Titen HD '/a"Ox3". • WELCOME RAMP CALCS-IBC 2018 Page 3 Member Dara --.-. Snape I Malsaul rays End Releases End Offsets ttraaire Marto L abe, I Jani J Jdoi Rotate SuCCldn Sec Mart) I-Erd J-End I-End J-tnd Code Longtn Sat70M AVM AVM (In) Un,_ {01 — — Ni N Mi 10 (degrees) SEC1 l AL Y PIN 8 T ) 1.76 M2 ma N11 _ __ SEC1 ALIY PIN : 4.7881 M3 N11 N9 SEC', AL :Y [ 4.7558 M4 N9 PIN 'NB SEC, AL Y < M5 N5 N8 _ SEC2 L AL Y r � 5 -WA,„._. N7 NB - SEC3 , AL Y T_ 1s9g 1.17 N5 _ NO SEC3 AL Y , ; � 1 599 I ✓ e �- No SG�7 AL Y , 115 AL833 _. t-- Y 1.410 I N2 N70 SEC3 AL Y a417 SecUDns Secttm Database bale* Area SA SA I(90,270) I(0.1e0) TIC Lobel Sh 1e Labe -.l,Y2 0It., (90,210) term (er1,..__,_ SEC1 Welcome Ramp AL r- 1.43E 112 1.2 .421 2.02 SEC2 Welcome Dec T AL—-i 1 438 1.2 1.2 .421 1.378 1 L SEC$ .,, TU2X2X2 L AL I,_ 197 1.2 1.2_ .513 .513 l Basic Load Case Data +I BLC No Basic load Case Category CMgnY 1 'ty Led Ty Tdals oaacf Code Dosv9m^ X Y J01++1 P* Overt Dist I 1 wl--Dead Load DL 1 Dead Load _,-_ 1 I _ 2 . w2•Pedestritf Load . LLS ILi'r Lead Spod (p d ,1rrc L as-. 1 1 S Member Direct Distributed Loads, Category:DL, BLC 1 :w1 -Dead Load Manber Lotid Cerectwn --... Start Magnitude End MDgnEIude u Strt location End Ldcab©n (km,9_ CIO(Fl o (u Q 1 lrt s 1.) M0 I 1 Y `,014 _ -,0t4t I M2 Y -,014 -.014 i I 0 0 . M3 .. Y -.014 -.014 ' 0 0 M4 Y 1-.014 -.014 I I 0 0 MS �._ Y 01E 018.. ) 0 .. 0 _ I Atwaber Direct Distributed Loads, Category:LLB,8LC 2 1 w2-Pedestrian Load Member Label Duct. n pNlu Sort Magnlule End Ma s1 Start Location Erwt L.uraton . Wits F) (t,Fl (tt ar%} Jit(.74) l M1 Y -.2 I -1 0 — ...._0 M2 "W. -.2 1 -.2 I I_.,� M5 .. Y 25 -.25 TM 0 -__ .L_ 0 1 Load Combinations I m 'HVa Da ion Env WS PD SRSS CO --- BLC Fedor ,BLC Factor 8LC Factor BLC FICOV ` v ;CPaad I Y r—(_ i 1 1 [ 1 2 1 _ -- FT I Fed. Loa n Y --1--1_1 m 2 1 - WELCOME RAMP CALCS-IBC 2018 Page 5 Load Combinations (continued) L - iam Description _ Env WS PO 5R55 CO BLC Facto- LSLC Factor BLC radar BLC Factor (3 I i i l . l I l l I _ -._ . . 15 -_ ' I_ L_ I 1 . - Envelope Member Stresses IAA Laity secnort A,ial Sneer amxling tap &wag Ed (Ks?) !-c -�Sns,) Lc 1 Lc eiti) Le r M1 I maxi .023 1 .319 11 I 0 1 6 ' 1 min .022 2 .299 2 I 0 1 0 1 2 max .003 1 9 .036 1 14.933 11 2,4061 2 min = .003 2 .034 t 4.625 12 -3.1 1 3 max -.017 2 -.23 2 ` 2.009 1 1 ' .1 197 2 Min -016 1 -.247 - 1 11.996 ! 2 -1.262 1. 1 4 max' -.036 2, . -.494 2 p -8.157 12 L 5.513 i min -.039 1 -.53 1 1 -3.774 ' 1 i 5.125 2 M2 1 max .059 2 .531 1 6 -8.355 12 5.599 1 min r 053 1 .497 2 -8.895 1 5.25 2 2 max' .04 2 ,246 [ 1 1.924 1 -1.114 2 min .032 1 .232 2 1.773 2 -1.211 1 3 max .02 2 -.032 12 4.893 1 -2.364 2 -min .011 1 -.035 1 4,558 2 -3.074 . 1 4 max! 001 i 2 -298 2 0 1 0 1 I min -.009 1 -.318 1 0 11 0 1 M3 1 1 max .2 1 .359 W1 -264 1 2 1.752 [ 1 _.'_ fmin .199 2 ,337 21 -2.789 1 1.859E 2 2 max .18 2 .077 1 1 3.268 1 1,9i ` 2 min 1 .18 1 .072 2 3.039 2 -2.653 1 3 max i__ i18 IA, -.192 1.467 1 -.864 E. min 1 159 : 1 -.206 1 1.375 ® -.922 1 4 max .141 2 -.456 © -7.533 Q 5.147 1 min .136 1 -.489 1 -8.192 1 4 796 L M4 1 max .029 1 1 .55 11 -8.455 2 5.68 min .026 2 .514 12 -904 1 5.313 2 max .012 0 252 1 f 2.887 iii • .564 Q! min .01 2 i .238 2 2.489 2 -1,676 1 3 max -.008 1 I -.043 2 15.661. 1 3;334 2 . min 000 2 .046 1 5.307 2 I -3.589 1 4 max -.022 2 1 -.321 2 0 1 0 1 min -.023 1 -.343 11 0 1 0 a 1 [ M5 1 max 152 1 ` .56 1 -5.456 2 L 6.538 1 . min .523 Q„ 5.832 1 6.116 2 mina,: 6.. 1 1 20 5 min Q � 599 2 7-7.25 3 max 15 1 .i73 2 16.464 1 -8.765 2 min .141 2 -.186 1 1 6.035 2 -7.240 1 4 max .152 1 -_52 2 -5.322 2 6.414 1, ' min .141 -.558 1 ar. 21 1 960 2 L_ M6 1 max .745 1 .523 11 0 1 A 1 min .695 2 .467 2 0 1 0 1 2 `max` .745 1 .523 1 2.717 1 -2j527 2 WELCOME RAMP CALCS-IBC 2018 Page 6 Envelope Member Stresses, (continued) { Mentor Labe! Sivleu+ Axial Shear Omen(ice 8endttp ix4 kM Lc La , Lc _ski.: Le min 695 2 .467 11111EINAQ -2. 17 1 3 'max 745 1 .523 1 5.435 -5,055 2 min .895 2 .487 2 5.055 -5.435 1 4 max 745 1 .523 1 8,152 -7 582 2 min . .695 2 _487 1 2 7,582 -8.152 1 { M7 1 max 1,208 1 -.499 2 0 0 1 min 1.129 2 -.533 1 0 0 - 1 2 ®', 1208 1 -.499 2 -2.591 2.77 1, min 1129 2 -.533 1 -2. 1 2, ,-.1 2 ' 3 max 1 208 s 1 -.499 2 -5.182 2 5.54 i min 1.129 ' 2 -.533 1 -5,54 1 5.1,82 ; 2 4 max 1.209 1 -,499 2 -7,774 1 2..-8.31 E 1 min -1.129 2 -.533 1 -8,31 1 7.774 2 1J8 1 max j 1.367 1 -.108 2 0 1 1 0 1J min 1 1-275 i 2 -.112 1 0 1 1 9 1 2 max 1 367 ; 1 -.108 2 44 2 454 1 1 mint 1.275 { 2 -.112 1 .454 i .44 2 3 max, 1.367 1 -.108 2 I -.879 2 .907 1 min 1275 2 -,112 1 -.907 1 .879 2 4 max'1 1.367 s 1 -.108 2 -1.319 2 1.261 1 min 11 275 2 -.112 11-1.381 1 1.319 9 2 { M9 1 max .93 1 -.521 2 0 1 0 1 j min r87 2 -.55 ; 1 0 1 0 1 2 'max -.521 2 ( -1,411 2 I 1.49 , 1 min 87- 2 -.55 1 i -1,49 G 1 11.411 2 3 max .93 1 -.521 E 2 I -2,822 ' 2 l 2.98 1 min .87 2 -,55 ! 1 -2.98 1 6 2.822 j 2„ 4 max 93 1 521 2 -4.233 2 4.�{71 1 _ min .oY 2 9 -.55 1 1 -4 471 1 1 4.233 2 M10. 1 ..max 1.424 { 1 -.048 1 0 1 0 1 i , min ; 1.332 ' 2 -.078 2 0 1 1 0 1 - 2 max` 1,424 1 -.048 1 -.065 ' 1 k 158 2 min 1 332 2 : -.078 2 a106 2 1 .065 1 -3 max 1.424 1 -.040 1 1 -.120 1 ' 212 2 min 1.332 2 -.070 2 -_212 ( 2 .129 1 4 max 1.424 1 -.045 1 -.194 1 _318 2 min, 1.332 2 -.078 2 1 -.318 2 .194 11 Envelope Member Section Forces II f Member Lam Sec:lan Axal Lc Shear Lc Manent Lc r Mt _ 11 max 034 1 .382 1 1 1 0 min .031 2 ,358 1 2 : 0 0 2 max .004 1 .043 1 1 -.317 2 min ,004 -2 .041 2 I -.338 1 1 3 max' -.024 1 2 -.276 2 [ -.131 2 min -.020 i 1 -.296 1 -.138 1 4 max .052 1 2 ' -592 2 1 .601 1 1 minl 054 I 1 534 1 j .559 12 r M2 1 max ,085 2 .436 1 1 81 { 1 min 1 .076 1 .595 2 573 1 2 2 maxi .057 2 .297 1 - -.122 12 • WELCOME RAMP CALCS-IBC 2018 Page 7 Enveiopo Member Section Farces, (eott tint)ady _ ~Vs Label Seeliwr A Ia_ Lc She Lc MoMent L min .0 I 1 .278 2 -,'1 a max i 3 max .029 i 2 -.036 2 -.312 min • .016 1 -.042 1 -.335 4 max .002 2 -.355 2 0 min -.013 1 -.38 1 0 1 r max. 286 1 1 431 1 .191 '� i M3 1 mine 286 2 .403 2 .181 2 2 max 158 2 .092 1 -206 2 . min .258 1 i .087 2 -.224 12 3 max .231 2 1 .-.23 2 -.094 min 229 1 1 -.247 1 •,101 4 max .203 2 i -.547 2 .561 . III _ initr .199 s 71 I -.586 1 .523 M4 1 max .042 1 .659 Ltd .62 ®` min .038 2 .610 ' 2 .56 2 .017 1 302 1 ! -.171 WS m n .015 2 .1 , 3 max -.008 I _.05 ' ita min 009 WIIIIMMIII -.369 1 4 max -.0 2 1111111E2111311 0 1 min -.033 1 -.4 d 1 ' MS 1 max .218 I 1 .671 1 1 .355 II3min j -- � .203 2 B27 2 � .332 max .218 1 •225 1 -.385 min ,203 2 L .21 2 -.391 11111 3 max' .21 1 i -.20 1 2 -368 MA _- ilia' .203 2 - -.222 1 iivEMIUm 4 max .216 ' 1 ..623 2 lifaillIffil min .203 12 -1369 1 .324 2 ._"..fig' 1 max .669 1 1 .218 1 1 1 0 1 . min .623 2 .203 2 0 1 2 .669 1 .218 1 -.108 2 min .823 IBA .203 2 -.116 1 3 max l ..r 1 ,21; 1 -.210 min .623 2 .203 2 -232 4 :max .669 1 .218 1 -.324 WI min .823 2 1 203 2 -348 la "" M I 1 Max 1.084 1 -.208 f 2 0Ell min 1.012 •222 1 1 0 1 2 max 1.084 1 -.208 2 . 1$ fi mirro 1.012 1F11 � .111 2 max 1.084 1 1 •: 1 min 1.012 2 -.222 2 max 1.084 Q -.208 .355 1 min 1012 2 -.222 RE .332 2 C-'648 max 1.226 1 -.045 En 0 i1 t i -247 0 mix mil •.045 .019 1 max 1.226 l -.045 2 03 INI min 1.144 047 .0192 51 2 i 1.228 -.045 FR .0 8 min 1.144 2 -.047 111111 WELCOME RAMP CALCS-IBC 2018 Page 8 Enveiope Member Section Forces, (continued) member Label Section Mai 1.4 Sher Le Mmnrd Lc (k)._.. 11(1 (kl [ 149 1 maxi 834 1 1 -.217 2 1 0 1 _ min 1 .28 2 -.229 1 0 II 2 .maxi .834 1 -.217 2 .064 min 1 .76 2 -.229 1 .0.06 ni 3 max 834 1 -.217 2 127 MN mn 78 2 -.229 1 121 H 4 max .834 1 i -_217 2 .191 181 1-.229 min �(S 2 I II (_ M10 1 max 1,277 1 T -.02 , 1 0 1 min 1.195 i 2 1 -.033 2 0 1 Max 1,277 _f 1 ' -.02 .005 min 1.195 2 -.033 ,063 3 �.. 1.277 1 -.02 E .009 2 mini 1.195 1 2 -.033 2 .006 1 4 rmax6 1 277 1 I -.02 1 I 014 I 2 min 1.195 2 -.033 2 S .008 1 Envelope Member Defections Illirrter LON SeGGon x•Tra.a Lc yTrans!re Le 0)UV Rao Lc M1 1 maxi D.L.. 11 10 2 Pie mln2 max 0 1 -.048 2 1124NC 75 OA min 2 -.049 1 • 1164,654 1 3 maxi 0 1 -.033 2 1766,299_ 2 min 0 2 -,035 1 1859 338 1 4- max 0 1 0 2 NC ±_. -..,- min 0 t z 0 1 f NC M2 j 1 max; 0 1 0 2 I NC._ f min' 0 2 0 1 1 NC 0 2 hmax I 0 1 -.032 LL' 2 1845.986 2 min 0 2 -.034 1 17013.635 1 3 max 0 1 •1145 f 2 1280.237; 2 min 0 2 -.049 1 1169,011 4 max` 0 1 0 2 NC min 0 2 0 1 NC 943 1 max 0 1 0 2 NC • min 0 2 , 0 1 NC -2 max 0 1 .-029 2 2083 401 2 min -.001 2 •031 ' 1 1919,610 3 max -.001 f ' -.021 2 2931.998 min 1 -,002 1 2 •.022 1 2735,50471 4 max -.002 1 i -.002 -2 NCM I ' min -.002 2 -.002 1 NC M4 ,_ 1 max •.002 1 -.002 2 NC min -.002 2 -.002 1 NC 2 max -.002 p 1 •.047 2 1338 222 2 min -.002 2 -.05 1 1247.238 1 3 max •.002 1 -.082 2- 098.057 ,2 min -.002 2 -.067 1 • 930,197 4 max i -.002 „ 1 -.002 2 NC min I -002 2 -.002 1 NC • WELCOME RAMP CALCS-IBC 2018 Page 9 Envelope Member Deflections. (continued) Menthe'I Section =•f ennstale Lo y-Tranal is (n)LP/Rao 1rc iIn I MS max 00 1-rKK -.002 2 .002 1 2 -.002 1 ' NC , 2 Ma -.002 -.109 2 559.623 2 min -.002 -117 1 521,856 1 3 max -,002 -109 2 557.976 2 14 max *-,002 -.002 2 _.001 1 m 52NC74 ' 1 --- min -.003 2 001 I NC I 146 1 max 0 1 0 , 1 NC i min 0 1 0 1 NC ; 2 max 0 2 1 -.013 2 1392.207 El min 0 U -.014 1 1294.941 I 1 3 [maxi 0 -_016 2 1113.7861 2 min f 0 1 -017 1 1035.063 1 4 max' -.001 12 .003 2 NC i _ min -.001 1 .002 j 1 NC w M 7 ,. ., 1 max 0 1 0 ° 1 NC s_ Mil r 0 0 0 ILIIIILEMB UM 0 2 .01• Q 1270 353 KZ 0 .01 2 1357.848 2 max -o} u .02 1 1016.282 i 1 min -.002 1 .019 111 1086.3591 2 max -.002 2 .002 NC min -.002 1 .001 1 NC i Mg max 0 0 1 0 � i i NC__,_ : 1 max n_ 0 .0002 2 NNCC min 0 Ell ,002 KM 9920.4 ,1 3 max 0-001 2 .003 2 8189.633 i 2 mill -.001 I 1 = .003 1 7938.381 1 4 max -.002 12 1 .002 .. 2 NC Imin -.002 1 .O01_ 1 NC max. 01 0 1 NC min - 0 1 _...0 IN NC 2 max° 0 2 .002 1 14529485 '1 min, �_.. I_ 0 1 .002 2 4784 344 2 3 max I 0 2 .003 2 3827,475 2 min [ 0 11 J .003 1 3623,668 1 4 1max 0 J 2 0 2 NC I mini 0 1 1 0 1 1 NC L Mi0 1 max 0 1 0 1 1 NC 1 miin 0 1 0 11 NC 2 .max g`g 0 2 0 2 'NC I mini 0 1 0 11 NC NMthax 0 2 0 2 NC Min 0 11 0 1 NC 0 max 0 © 0 2 NC I Min I 0 1 . 0 1 NC WELCOME RAMP CALCS-IBC 2018 Page 10 I Ix] E { i 1 PASI 1 -�'° T.---- 7 i i i E i r I • WELCOME RAMP CALCS-IBC 2018 Page 11 riit.x TTTT1 1 i r , I 'iamb AI c A,wl-Ctatad Load suiubm:$IIWalopf ,..,. WELCOME RAMP CALCS-IBC 2018 Page 12 Y _ate (IC 1at.,zo ur A 5"`"1,1Q WALK'ti tit HI L.L. 94.01wr Cowin* • WELCOME RAMP CALCS-IBC 2018 Page 13 ., . pit..1 r----- . ern 1 „2,„.. ....2.... , I I II in I I ' a,. yip * '� }6 '- ' jj.. 2 1 j: • it 9t1A Mb i t f 1 tea&LC f,Ot Cad.toad WELCOME RAMP CALLS-IBC 2018 Page 14 . Section:Welcome Ramp Section Properties: Y__ 3.00©�.I Numhar of Shapes =2 �4ri .e71 Total Width =2.00 in Total Height =4.00 in Center,Xo =0 304 in 'rr Center,Yo =-0.457 in 1j2z/ i N x-oar(Right) = 1.571 In §' X-tiar(Len) =0.429 in 4 Y-bar(Top) - 2,457 in X I D — — X Y-ar (But) = 1.543 in Equivalent Properties: Area.Az = 1.438 In'2 1 Inertia, Ixx =2.02 in^4 I Inertia,lyy =0.421Z In^4 Inertia.Ixy =-0.4565 in^4 Y Torsional, J =0-0299 irrs4 Section Diagram Modulus. 5x(Top) =0.8225 in43 Modulus, Sx(Bot) = 1,309 ir1A3 Modulus. Sy(Left) =0.981 in"3 Modulus, Sy(Right) =02682 in^3 Plastic Modulus,Zx = 1.4921 in^3 Plastic Modulus,Zy =0.4852 inA3 Radius.rx 1,186 In Radiu., ry =0.541 In Summary of Section Properties Sr.No. Seaton width Height Xo Yo Ax trc ivy 0 in In In in"2 in^4 InA4 1 WHC0n1e 2.00 4.00 0.304 -0,457 1.433 2.02 0.4212 Ramp WELCOME RAMP CALCS-IBC 2018 Page 15 Section:Welcome Deck Section Properties: Y — _a t Number of Shapes 2 Total Width =2.00 In ' Total Height '4,00 in ) Center,xo -0,304 in ' Center, To =0.114 in I )(tar(Right) = 1.571 in f X-bar(l.en) —0.429 in x Q t p x Y-bar(fop) m 1.886 in v Y-har(Bot) =2114 in E9uivalenl Properties: 1 11: 1.1111ml Area.Ax =1.438 )n"2 Inertia,Ixx = 1,378 in"4 Inertia.lyy =0.4212 In"4 Inertia,Ixy =0.1141 in"4 Y I Torsional, J =0.0299 in"4 Section Diagram Modulus, Sx(Top) =0.73A9 in"3 Modulus, Sx(Bol) =0.652 in"3 Modulus, Sy(Left) =0.981 In"3 Modulus,Sy(Rlght) =0.2682 in"3 Plastic Modulus,Zx = 1.0532 in"3 Plastic Modulus,Zy =0,4852 InA3 Radius, rx =0.9792 in Radius, ry =0.5413 in Summary of Section Properties Sh.No. Sean Width riaght XO Yo Ha lac yY in In in i7 10'2 in"4 in"4 . r Wdromo 2:00 4.on 0304 0.114 143E 1..378 0.4212. (Deck WELCOME RAMP CALCS-IBC 2018 Page 16 . Member Stress Results Access the Member Section Stresses spreadsheet by selecting the Results menu and then selecting Members ► Stresses. These are ties calcu ated along each pc:ic member. The number of secttons.Ior which stresses are reported is controlled by the Number Of Sections specified on the Globai.,wrnelrwe The actual number of Bee-dent-5 is this Number UI Sections minus 1. The incremental length a1 each segment is the same. For example,if you sperily 5 Seel ions,the member Is divided intn 4 aqua!pieces,and the stresses ere reported fur each piece. There wilt be four stress values listed for sack section location along the membct taking into account any rr Alact ip• The upill tar the stresses are shown at the top of each column. As for the sign convention,I he signs of those results correspond to the signs of the forces. These line up as positive or negative acr=ding to the member local axis directions. The axial stress is the ratio P/A,where Pis the section axial force. A positive stress is compressive,since the sign of the stress follows the Sian of(he trim, . The shear stress 17 calculated ae VISA.,whore S.A.is the elfeeGne this;'r.a For members not d flfled with a sertinn set a value of 1.2 is used for the shear area coefficient SA The bending stresses are calculated using the!smelter equation M C r I,where'll'Is the tier W ing rilomnnt,'c'is the distance from the neutral axis to the extreme fiber and T is the moment of inertia. The stress for the section's extreme edge is listed with respect to the positive and negative directions of the fora' '1:70..4. ;3.A positive stress is compressive end a negative stress is tensile. Some shapes are not symmetrical about both local axes. For example Tee and Channel shapes, Thus the stress el the unitive and negative edges may not tse the same.. The locations Par the calculated stresses are Illustrated in this diagram Y Bend Top Bend Top film. Hind Hot Bend Bol Y T Rend Top Bend Top Bend Bet Bend Hot So,the ydop location is the extreme giber of the shape in the positive local y direction,ytot i9 the extreme fiber in the negative local y direction,etc The y-top,bot stresses are calculated using ML. For enveloped results the maximum and minimum value at each location is listed. The load combination producing the maximum nr minimum is also listed. In thole column. To include a particular Load r rnhinatinn in the envelope analysis,open the Load Combinations spreadsheet and check the box in the'Env column. Nolo A special case is bending stress calculatioru for single angles. The 4cr~i r. st,estes.IRr.saCy!a Qrrrin5 are reported for bending.about the principal axes, • To view the results for a particular member,use the find option l S wee the maximums ono.minimums,use the option, • WELCOME RAMP CALCS-IBC 2018 Page 17 r____H'V_I_.Y 1 I , I 1 , I 1 I ,ro.9 E. -. f 1 I 1 1 I I. R ! II I _„7 i Caution ending Member Bending Moments{x-n) , Ruction units are k ar.t k:Ft i WELCOME RAMP CALCS-IBC 2018 Page 18 . TABLE 20-11-A.--141.40411.13/1/1102-1APIICAL PROPEN1IES r-01 ALUaller ALLOV5-IctlIIIIIVIII14/1 Vs/4444 A •Given In 1/6113 of IM I%pop opir - ...- ?TAMA 4,-- caromilim NE papc610AR IL•-•041 IlLadigadre Pandit.6 %! I 2e Da Ez 1 LI % I Os _ —*air /41014.L•11 •394 Par to44 we ___..... - oda*la littta Y/63.11111 Em 470.4e• %.1/to 63410 36 21 II 31 13 70 _16 104/97 11111 El/rissomva 0501 and ova 34 71 II 21 12 TO 31 1R406 -H112 Mat (I. -504)499 RI 114 17 21 19 73 )1 19400 Ali/ Mart 9 309-1 PCO 33 lb 16 11 9 70 71 MVP -11111 VI 1.031..2 603 15 14 15 11 11 TD I 11 10,4120 -41111 'nue 2.071-3.003 36 1 a 13 II I be 1 lb /114130 -H11 3 brie and plate All 40 21 23 44 16 /I 41 19,972 i -/1N Dtrwer.tuhe- All 44 11 12 26 20 14 5: 111.4tA I )174 101 56791[ 110139036:1,3661111 45 )5 11 14 ...... 3454-N111 Gnu/Wm 33 19 16 20 "t 1 ./ II 64 11 10.11:11 " 11 19,403 Hill 11411110044 coal and a...4 11 19 lb 19 F 1 64 10 lb_4132 -1-1113 7.311116011 113 4,3 oft) 31 13 II 19 7 62 24 10430 NO Slam ard pwe 0 020-1060 31 26 34 31 11 TO 41 10,401 17 '14 23 2 13 33 - 47 101 36x4i aO m/ mit 0.0201 071 39 29 7 10407 1414 0111 Iirm,Figns up le 0300 41 26 15 12 44 The,41:---i-7 --1 41111 101111919.99 0301 NM over 41 2/5 27 24 IS 12 41 141402 41117 1..i.F.46m, ap to 3002 41 NI 20 24 I i 111 14 IRAN N311 Orel awl mot 0 1641250 44 33 r1 ri 19 11 )fi 10100 -1011 Purr 1.251.1 500 41 31 71 23 11 NI 53 10.40D 4L1/1 PLNE 1-301-3060 41 29 I LI 23 17 12 49 10403 -MI/ 51.**e 0651.0319 41 36 I 34 zit 21 94 41 10405 -1041 314/41 0 3.61 110149 31 41 39 11 24 1111 70 16,466 6993.-T5 frIrmirprm Up lo 0.500 II 33 35 N ZO AO 56 10.160 0001.11. 1114,0 mai'Arm 0.01114.007 41 35 35 27 117 1* 51 19,1m -1411 11.19.94044 (1.1$ ...___a... ..-39--___ "1_ 56 10,106 / ..--...-...-- -14_ MAWS and sod kw or to S.0110 47 33 f 33 n 20 SS SO ; 111100 . 70 (1111411 Iota. 1/1.125 0 WO 41 17 If 13 21 20 11 36 16796 I •715 -Nye up 1.,0.999 41 33 33 27 20 NI 56 10,06 111 pip. ola 0.999 , !I II 35 14 20 I 80 56 , 10760 I . . • ... ' • ' _ . ._up_cq• ., _____F_ .! „(....... ._41._. 43. ... .. --4-5,5— -4444— 21-, .11(40.11g . 1101440114 TT,44 -re Fromputo All 30 73 2) 19 14 63 40 1071.1 1111 11 61444111ons.,, up an 1120 II IS 15 34 , 20 10 Si _ 10.1,7/ 'Mama olm•or-r11,to T63111 tentm 1F.ird r,ate1711601mn specific/I vIluta(eacer lot ANN*76/4-1114,.7116 NW 1.4.,N4 Ak3a43021-11111r 099er ottemplF pa11.t..14.... r....i/As eriffli.......-Nlece/4 --74 - - • 717m1404414,1111caloalattonft an Aran Or 61641L14101"c1413411111 Ina werenkwIly Ode 4 11101.416_116 2040 lo.rr11.4*-Ilar.,el L.,s in AI,vul,onn. r- - -- - TABL0 204F R-11114/014111 SIECIWOCAL PROPERTIES FOR WELDED AIM unum ALLOYS' (Goa%woolen Arc or Oki 11•10 Acc Wilding w110 No Po9bre41/4944 l'11191,1wn11 _, - ornimis. notscri mom WWI 6746146 1.11442U41 MP rilleAN1W ,-; ' -- Rwma ' .0-1 lig. rrg 147T;E I rir p...0 .... ._ - - at.,MD/314,131 -MAW 4.41 ' •LINDIVIIIII• _z —_ - - 11%14113.1114 - MI II 45 li 4 2_5 - -, 121)4111.-H14, 106, '' All 1.1 7 7 10 4 11/ I) Mew M4111,-1114.-MO/ 43,11 II 11 e lo 1 i Je il 1 4111 „ 10:14 NIL 1131,.1116 - - - 45 u il li 14 eii 46 --, . /WM 1104-1111.41:4 i 1114,, All 11 II 11 13 6 1 44El .1116 _ lates 1115 51104111.0113-1050 11 9 9 v 1 7 --ii —- 'is ---' X1714ii 2,4 14.-,111, ..... 4114 AR 14 7 7 9 4 21_...._..11.10 • WELCOME RAMP CALCS-IBC 2018 Page 19 rrn c-) Far • basing ylCkl ruengrb Villain 1.1)inch(25.4 mum)of a weld,ku(oval f• _ kn eth or team between points at which the compression fler�se 4 a.p O F. • Jbwabte cumpre.wve strew,MI IMPn1• al movement.or length of candleccr beam from free end to pout at 4 Fo • compressive yield wcnyln.lei(TWO. sloe mange n supponed against lateral movement.a:else'(reran Fro,. • ccoPtiwive yield strength across a bun weld(02 percent offset io laincln(254 milt)gage leng;>,n of portion of ca,tutln.sing sviU»n I in meh(25.G ton) gage length).ILO fMpa). welds al cads of columns tka[are supper ed a both erday..ii bo In 4 F,r, • tat where hr is slendcmess ratio for member considered ass cologne tending = increased Imghh o be substituted in opium formula to dettrmine welded co:urw.In[her(tam), ^0 to fail in the plane of the applied beading moments.ksi(MPa). F. a allowable stress for cross section 1.0 inch RSA molar more from`veld,keg(1•'1Pa)• fir = `lent icroess ratio for column, Fo,. • alowabla sues`on taass wpm,par of whose sea Lies wain' LC(25,4 tom)inch of a Ms herding mar xnl,inch•kaps Om), weld km(MPa). ! kr = barad)rig moment al Center of span resulting from applied brndu F, = allowable shear stew foe members subjected only to torsion or shear'•ksi(WO- (kN m). F,,„ • shear tf.unuim suer.gaa,ksi(KV, Me a maximum bending ng moment in span ru llting front applied tartly Fa, =. skill w sr ultimate ee gbh within l.0 inch.(25 4 tarn)of a weld ksi(WO. Me,M2 (kN•mh FQ, = akw yield strength,ksi(NMPa1 F,r,,, . shear yield strength within 1.0 inch(25.4 tam)of a weld,kw(MN). • beading moments m two ends of a beano,inch-hips 1k.N.m0. F„ = tensile ultimate strength,ksi(MPa). N . leagtb of bearing at reaction cr coetctx.hated load,inches(tam). feev . tensile ultimate strength across a bun weld,ksi(14Pay i Ad - factor of eatery on appearance of buckling. F,y . tensile yield strength.kai(MP2). It. - factor of safety on ultimate strength. F,r = lost*yield strength across a butt weld [0.2 percent offset in 10-mch(254 tam)gga ar a facto of idly on yield strength. (7 length].ksi(Pall Y = local load coneeouation an betting stiffener,kips(kN), rFyn= either F., Fry,whichever is smaller,ks5(*•Pa� Pr - allowable'maim or concentrated toad per web,lope(kl,l), n _ j : calculated stria.ksi(MPhil, P. * allowable tensile load per fattener,sheet 10 purlin or girt.kips(1IN1= CA 1. = Aerate compressive stress on Cross section of member prod'writ by mini compressive a I R curdle radius of round tubemaa mtm tube or outside radio oval for an al r "� land.kai(1s�ak ( Re • curvature radius of curvare of tubular members.:mhos(mml- nfa = ttnitittnun beading stress(corapreauvel caused by transverse bats ar cad.torrents,MI RI. • transition radiUf,the radius of an a:UrrJmmenl Of the weld druil N (MP.). r lean radius of gymhion of a ro4rmr.,irtcbcs lnrm). O J,. . shear sum caused by torsion oritaaareoe shear,ksi(Way 2 = wad w of gyration of tipar lulls ab rt faceo(flaage from which rp,,,,, .-. G e modulus of elasticity M sheen ksi(Way dicu1 rr . radius of gyration ore beam(about asispralleltoweb),nicks Man Is g . spacing of rive a bah hulas parpea ficulu a dlrocuma M load,incites(tam}. wnsymrnetncid about the borizonul axis,rr sneak by calculated es to a • dear height of shear web,inches(tam). tome;he same as the ccmpressicn flange) f a moment of inertia.inches'.(mina). 5, = section modulus of a beam roan potation side.ai hes3(nue3). I, • moment of inane of horizontal stiffener,inch&(mina). t Sit . suds ratio.the ra)o of minimum areas to mminiurn chest d, a rnomatt of inertia of a an beam about stiffener to resist spar bucking,inches'.(mina). S, modulusectiomodulus of a beam.temitm side,iinchel laud), I, • moment t of i crow of a beam about wan perpendicurx to web.inches'(mina)• Si' SZ• slertderrtesi linolt 4 . moment of inertia of a beam about axis parallel to web,incites (tam k m Ike = moment of inertia of compression elunl about axis parallel to venIcal web,inchea4 a s(wcirg of ransvmse al`fenrn(clear dast�ice between stiffeners for sax of a pair of members.one on earls side of de web.center-to-center distal I rnm`I. ctera consisting d a member coax side of the web rod .1 = torsion constant,inches'.(rose), or bon'holes parallel c direct m of cad.f.chat(rota).Ykiochu tom al • coefficemfar dettinsedoncksdetnctsltnit52fxscctioos foe which the allovableeom r . tocktcasofllangc.ptmc,webortube.inekes(nra((For:a(eredflangr pressive`afar it based on crippling.strength. • it _ thickness,) ,!_ aocasellicient for r wind he allowable compressive sums is sections bases:co cupping strength tr = their forte oo web at stiffener location.kips(kN). do above I f far which:he allowable compressive u a a factor equal to unity for a rottener confining 1r,g of equal members or bat kr _ coefficient for compression members. and equal to 3,5 for a stiffener coluisung of a rtembe or.one side ord. kr • coetu?elent for nation members. a . an le between lax of rich wad g j g L a length of compression member between points of lateral support_or twice the Iming!h of a a P Pla.�e of br�rin wrlsue(a s')0 de cantilever column(except where anarysia shows ltheta.home(length ran be aaed),mchtl 2a0).4 lesenllfkarloa Atominnmt/ora[uctuml eiemerW shall at Wkmr• mg "ass handled in the fihriutore plant w that Mc Impetrate shays and tem cs .are r N IV 0 (I, ) CALC • .1-XX r en .:'. rtwo AA 17 .1.04 • eo A I r•75, I I 71- C.J —1----- — .. .4 to * VI til 0.1 )-- j 4 1.1 •. 4 - -1-jj -r . .. •.v4t: t.7- v.. . BA1,7_ 1. 111/41 r_ ..a. M n — Z /1 , hi .-L (2'')C.2-5)(4,c) f (.5X.2 5)(1,7$") 2, 215F 1,54359 • :. (.25)(4,0) 74-,:,:25)(;.?!-) 112 = r--1..)(' ? Ci`f..." "i- (2.37,51('2 )0/15,./ _ -3.019 - 2. trif_. . ( 25)(4-0) f• (- 2_5)(7,7s-') . . J -1- A d 2- 1- I f A (4)5.4, , s(4)(.4.5401 -t- i'15('7,1.) -i- 1.750.5X I-04s4 —7 -_, ---/-i_ ,-, „.....,,,f ,.,. ‘f -.r ,.. 1.1-:;-..,. r ,o,zor4 -I- .(6, o .23 r 0. 4764 -= ;4.'-r--.'''' ' ' 4 _ . 05.6/5)3 -r- /,75(•7 2:X°'2641401 /2,.. ± 0.0130 '1- 6,6C23 -IL a• 0 2,418 = f••3 7,5'1•?' • WELCOME RAMP CALCS-IBC 2018 Page 21 (2,`} CA «. _r r,da Ate. t-'4Ti FA r_ .. 0.4zgs Yam-... .: . .. - y 4.0ei 4 o./25._..._ -30 sr Lru M k?Y = (0.1 sxa 35)(4,o) f 0./25x.25)(/.75) p, 47 .25(4.c) .%5 (1.75) = -- 1 + � dl �- T. z, = wt b2(cc) r Ir 0 (•15) + .0(.z5)(4,3013)t .25(1.15) •25(1.15)(.s157) 0,00,52. .F c", 041-4. Q, 1117 -4- Q, 2 117 = 0,421144' WELCOME RAMP CALCS-IBC 2018 Page 22 \ (Z. ) c*&£. %t @ 3 .2'2\ 7 / }c • 3 4 (v&a E 34 -/ L/ I, : «,2zol } 704 J. ¥ _ �« 6 4O4I ?'5 X- , Fiy r735 - � = ft6: rrEv Or Olewa ` 7PS/ v r / . »»b f %»cs=,-, w _ (u27 7 a e a- ) 9 K F = 7(4) m lAr` \ A .4 F L. ) 260 R.rw D z " 7(.4) ^ r7.spr %#rF OM LL leyel • WELCOME RAMP C L y!B 2018 Page 23 Jim . �125 — iS4 4/ohs l� TS XI . (As) 9 1 1 t '`2 fi ?.r: v `: il. II = + K i ' (1• ) .�'.'r: Pe, fAi7 /' r'A' ,3-,1 r V -...• i'iyfc i V /QSSJ f i I gepiv' c, "rf� /- r '`f Imo'—r- .- a T / 5 S 4: M, L: /'- , 4 OF `''r.x <" ' V Fr 7 - 7K•cf ..... V ` Fj = 20, 2r r..,' ftssc,r1r � ) o. (7S (9.i5"Y2 sae::)620.3; 5s' — /. 2� `< '� (� z bS b flh'X C'a,) C IC K. Poi.vr 'A F0iP Ai,/,-- , )2 FWL r :e ©F iYz rj. ri, - :, Fy _ ayj ( f) - IA rcs+ • WELCOME RAMP CALCS-IBC 2018 Page 25 (a. ) Coti,r; • f_.__ /S h. 2�1Iy 1 ,. ib •1 Tit C fll4)e, a c-A)L,/.r� C r 7 ..{F` r / rx i'i : 4e,76.sd ., L &3 r T tie A 61 L r ry o r= Ti F lS'4 ir x f 3/.4n et 4- Pnr N'! n To Acc Err Srcmgrt I1 1) 265, rb. . 0,) Air xi, 4 >;Cc. MAX. c( tf ApPcre.° Syj%z'!x i'/err Li com04 f- . . w z ///q,z; `' T -' k'a ` 4©7'73'If:14' r= 4 br9 i0/4- zo 1 ..; fe,©19.zo lb < /l 2 C S t o.k _ Trte-CEFd e, 74F PoSr w,,,i F411. r art-rot Pi r0 A To ArLJNL, IN sp.e,4g .i r perr4r .4" .9 = g' / 7-f46- nrrN,.rruaa /kC. u,4,34E LEG ai'C.,4P FDr` AwY L44 fF /Ne )0,4,e-1i/opts PS/b .0,a.ra-0 r/../_. .. !..AAi_.. WELCOME RAMP CALCS-IBC 2018 Page 26 . . riici_ Oirc IS THE vfw FS1f// FOR A 7' SeC7 /piv �7G AT FOR I?. I) FOP AS,N6L£ PosT ,ergo ,?CIA.QC systr 5r4,+.. 2) FC,J4^ A _":i46�f A�Sr g•1_? . .._rein _ • 'a .. . l; G rr+1s e " .vs r,�.,I V a//lr.r -S ° y C fIA'A- t f' •'. 7J/r r'-p ' [/�" �' Air ., SSG•r-rrs 7-P rr:p3 -, liar:•: 54 ier7q/4y use t urr r, T post _N Ce~n1CR. pos r car:./ 3c }-•'.' . ; /6,1 /' ff©7/4':c, Ale u.• Onaole , ,,9 ie FOr 6'er n Seel/on is 4 ff,•2 Qtng le Pia r<q' 80 Cf T hrs ert. / 71 S'C T/ot/ 1 _ //V /A 6- L c Z. r T A` (% f-.ram Er'4 PI, WELCOME RAMP CALCS-IBC 2018 Page 28 . s1 parr L07d 0.ti<(401 Iri 2.1-47.5 P 6.2s F72 loe psr 1,6 5' 7psr bG t r Srrv:re tear/per pas'• E1:_t*t &cd,s7uia :rs,: • .. r.i6s7T•N? r„s4 jl A A II N6W €s.l7.+9 Posr 1Vc4.6.,/oad Itr Posy- %I TA. USX 7.5 . r2SFrr 40 i_p___ I A/ ` t i Mew pos; Fro �� mew AuvE ri: 3•5C79 = 2Y.5/'e NPl- Gr'F?n fffqq Sr.r,f{Lor .. L-- VQCly.'.cr[pS� Nor Inc(ud. 5 ling le mitt-,1.`"A s.'c A'9fe . Pr c.'sep Gor New parr • WELCOME RAMP CALCS-IBC 2018 Page 29 ' I ! L�T;•1 PL7Ks �B i l r[h4nnel s.4WPe' rcr 6yro7 nvg III✓ / ✓✓✓I!/7TI;F wCl4 oP ©017. C9NN er/Ori far /t Or"Ynr. COIP)Oolr connec re oN Le95 WELCOME RAMP CALCS-IBC 2018 Page 30 }M to/ !- C*'R r%vI r.AP4E a 0-H A p 2- 6 w ts7 61 - r t r LS IONS rrlan fa . 3.8»_ »ty »z «c , &z= 35 r«z � y 201 ete.Q or a, . /A_ roi. ZI= $*r F /0 /4, P . 4 e ,# T / Q/ f f 12.9 #r- » _wl w - / 561 l .a- Al.rkoki. &IA.&Pi a iz .' ITEM RQ( aLI¥§ £04J ar as r,_ ¥r_m NO z 7,! Q„ *, e '- \c z - .5655 4® 4' ®` ' 9 54.s , = � a¥6 <«/}Z & �kln! LOAD #4& az4ii®6 /, , •w® tcQd F@ z = 222 tIS • 2( $ 1FM7 . HFAcIN$. 75 ,oft - AR_w. 1•4111, Beira, RR 'Pe ,we Aw oral < »?a a 7 &• . '' , .77 F 4,7- 6 pzs I 1, 372. a !r • 7 / f < J, z it WELCOME RAMP C %mC2ma Page 31 JTFM 4. 1ATAL Load on Roc( P. 7 6'sf1 . 1..e--04XML CRUSh14/6 OF RQL-T l4// U pp 4rec,, ?. ^: ( N39 ' , 910.9.i2 Lgvrl r 2G27 16 _ 59,y jr.' < fryr 35rs; Dh T 7 f H 5, Base 1=/4, re f'cri r9 2 627 16_ : bSSpsi NQT oh Utz'+ 4110:.-4,6We food, i'Co p PSF 4r roor or az 7Fs% r`ky a lfrr B(DCr s •78112 0000 Fs- (I-78 Pr') = 7111 !k > 2 6 2 2 /b OK .` J+- WELCOME RAMP CALCS-IBC 2018 Page 32 _ Bi - i y - WELCOME RAMP CALCS-IBC 2018 Page 33 _ ___ . . .. r----- - . F I 1 `, 1 1 .. , . I jfu� y� ; �a .a F jt ! ° -" 0 2 a1 -thing 0,5 0.5 ' .--.2 03 t2 • . 1 - 1 1 - 1 1 Results for LC A,DL•Ped Load Member Banding Mt ante(k.ft) RE2ciiari units are k and k-it WELCOME RAMP CALCS-IBC 2018 Page 34 - Member Data Shape, Met riat whys End Reeamee End Offsets Wades Mcmbet i a3w-t l.le J Jaad Ralal4Seehffe Sif Mcmt t-Ead J-End I-End J.End Ude Lwgel TOM AVM AVM Su+} gat ft .wM1 N6 T N9 _ SEC2 AL Y 1 clog 1 M3 N5 N$ SEC3 AL Y 1 ' N ..,. N6AEG4 AL Y s 3,5 M5 Ni3A N7A +C1 AL Y 3,5 147 I 9 N8 8 2 Al. Y 3.5 Sections ': t6511. OdiAMISIP maw* Area SA SA I(00,2705 1(4,114 T C tebei Shape Lite 05,r2 90,278 (ha4) SECS ekQmeRam AL 143$ 1.2 12 421 T 2.02 SEc2 e a 01 AL'' a 1438 •,'i , 12 s'_I . _ ,:+ f<` 1.37e f SEC3 TU2X'2X2 AL 897 1.2 1.2 .513 313 ,.•.- ri..v n._-_.— . _ R xr Fi t 3. a 1 ', '$::4.49- -.- 3.�i�. , .�EL`4 # « "W7.4"J{10a5 � I 3�$ 'r bL' �„9 * i _ �`^ - _ :. Member Deflections, By Combination LC FA L,e1 ia4e1 Se<101 z.rrxrslasen yTransla'1°t (nl Ulf Ratio t41 dm'1 1 Ml._._ I 1y 0 I S0pp ���/�a NCB;p } 2�i�- .V i^:�,y,. -.0 -O3564$:.,.'� 3 0 -.174 1377 517 , 4 r' ' C 214 ,;1 M2 1 1 .°0 0 NC a 0 -.018 1187.118 , •.'!r. ;_. t 4. r s'x l"`Ssr i4 to ayL„e Ct'F V. M3 7 0 0 NC '- 7 ,1 —.7o,' xnrr' 013 ` 4s$. 1 3 0 `, , .016 1167.118 0 'N .` M4' 1 0 0 NC 0 -.012 4257.729 4. M5 1 0 -.003 No. s 4 -.eta 3105.087 1 1 0 0 NC 3 -.002 0 NC M7 1 0 -.214 NC 3 r -.088 3035.848 vairaig WELCOME RAMP CALCS-IBC 2018 Page 35 • Member Stresses,By Combination L4 Member inhal Soditn A+ms1 Sheer Banding tap Rending bat (MO (ks 1 M1_�, 135 � 5.078 27t "' . 5,883 3 .135 _21 4.538 —5-085 . • . =135 ' 21 ` ` ;51,33 ; -s :10 474:t, 1 I712 i .279 484 0 0 .,x _ .._ % 2 . ra-279 ,rz };. . '.4:412 :' 3 279 .484 4.824 -4.824 v`°^;,;^ % 4 f' .'I c279 .4 i. '?1'.238' r S.:41,'t3@'4;" "` 1 1 279 , -.464 0 0 t . M3' `'2'' r 279 4 .,� gym-.. ..<y 3 279 —.484 -4.824 4.824 - .'. ,. '4 • 279 ~.I..-',4 £j`} "-7':2336%; t f=7' 3$'=i ' 1 M4 1 0 579 0 0 7' ", 2 i—r- 0 .072:i�r "7,8380 r6' =3:338 :7 1 3J1 0 435 .371 —1,479 I {y($."" 1 , 0 942 1.401 5 57 f * ', 2 .. — 0 435 : :. I :371; 1.479.-.- ,f�4 •' 33 1 0 012 2 &38 -3.338 tY }Val- .1,4, '' SYf:'.;`' "R ., ! '- O 1, .579.'.: .2;JY..{�f-v. i yt,S,:, 1 MO 1 1.912 0 0 0 4lW 4,r:{ -" r '`C-. a4.Etli 'a .T:1Y".,Yk. .1?>a Q�.hii .vt0 cnt-,. 3 1812 0 0 �0 '.'nx t : ;x^c a ,4 :'.4.Efis121.-!: +Y Wyk.A af V6 'w ', ,.":t1.!^Y ;iS'_: 1 M7 1 .135 -.21 0.343 -10.474 z f':: e' 3 2 :'.';=:;A35 a ,24r.t2.r },3..4536 ap 4.005.,:,. 3 .135 21 -.271 304 WELCOME RAMP CALCS-IBC 2018 Page 36 Section:RShapel Section Properties: Y 41:14•1 i Number of 5haipeS ,1=2 Total Width '=4,014 in -6 Total Height -4,61 in Canter,Xo = 14.995 in Center,To =-1.605 in r- Zli. kbar(Right) =2,007in cf4 ..- X-bar(Leh) :=2.007in 0, Y-bar(Top) =2.617in a Y-bair(BO =1.393in X ' I . X r: co Equivalent Properties: ll Area,Ax =2_24 In42 Inertia.Ix); =3.607 in44 1 Inertia,lyy =0,0487 int14 • Inertia,hry =0.000 in"4 I Torsional,J =0.0304 in44 Y mociutus,Sx(Top) = 1.378 in3 Section Diagram Modulus,Sx(Bot) =2.589 init3 Modulus,Sy(Let1) =0.473 11143 Modulus,Sy(Right) =0.473 in^9 Plastic moduius, Zx =2,492 in'l Plastic Modulus,Zy =18,794 inA3 Radius,rx =1,269 In Rafts,ry -0.651 in Basic Properties of Shapes In Section: sii.No. Shane Factor west! Hevu Xo Ye Ax lxx Irl in in . in In Irt"2 ire4 in-04 1 Unequal L 1 2.00 4 00 14.60 -1.0f) 1.12 1.004 0-30 2 Unequal!. 1 2.00 4.00 15.39 -1.151 1.12 1.804 0,30 Additional Properties of Shapes in Section: Sri-No. Shape J Sa SY ZX Zy rx rY ino4 inn tn"3 Iv 3 0'3 to In 1 Unequal L 0.0152 113905 0.1853 1 246 0.593 1.289 0.517 2 Unequal L 0.0152 0.5905 0.1853 1246 9.533 1,259 0 517 Summary of Properties Sh Nu. Season Willh Flexi6. XO 70 Al lxx lyy en in in In in"2 1114 ina4 1 iesnape 1 4 014 4.01 14-955 •1,005 224 3.607 0 040 WELCOME RAMP CALCS-IBC 2018 Page 37 Calculation Procedure 1) Closed Shapes: The geometric properties for closed shapes are computed by using the Polygon method. All closed shapes are represented by closed polygons. Curvilinear and circular shapes or edges are represented by several straight line segments.The properties the overall shape are computed by geometric summallon of the praparlies ur a trepeceid defined by prolectien of Iwo consecutive points of the cross-section on to the x and y aids_ 2) Open Shapes: The geometric properties for open(thin walled)shapes are computed by using the Polyline method. Au open shapes are represented by potyhines. Curvilinear and circular shapes or edges are represented by several straight line segments.The properties the overall shape are computed by geunrutric aummalron of the properties of a line defined by projection of two consecutive points of the cross•sectlon on to the x and y axis For derails refer to Um User's Menu& FOOTING SIZING CALCULATIONS 1) LOADING Dead Load= 7 psf Live Load = 100 psf Total Load, RAMP_TL= 107 psf 2) FOOTING ON SOIL Soil Allowable Bearing Pressure= 1500 psf 7' Platform Center Column,Area= 12.25 psf Max Load = 1311 # Min. Footing Area = 0.87 sf Footing Pad w/minimum Size= 11.22 inch USE:12-INCH,MIN. SQUARE PAD UNDER COLUMN ON SOIL 3) FOOTING ON PAVEMENT(Based on 8-inch Depth Pavement+Base) Allowable Bearing Pressure= 8831 psf 7' Platform Center Column,Area= 12.25 psf Max Load = 1311 # Min. Footing Area = 0.15 sf Footing Pad w/minimum Size= 4.62 inch USE:5-INCH,MIN. SQUARE PAD UNDER COLUMN ON PAVEMENT WELCOME RAMP CALCS-IBC 2018 Page 38 : ìç Lt. 0 /71. t n 'It(/11;;- ,r7 (1 7 5" ',owl, to?, 3.S..): 3 71/. $ a: Yv-ts. 5 ( 3/7.37,0( :se ? • 38q- 00,/00 US - 1- 781" 7o9c 57- /r WELCOME RAMP CALCS-IBC 2018 Page 39 • Section:Sectlonl Section Properties: Y 1.761 Number or Shapes =2 o.a©1 +a.ae1 Total Width =1.781 In f Total Height =3,582 In I I Center,Xo =0.00 in Center,Yo =0.00 injr::c73 X-bar(Right) =0,891 in cp Y %-bar(Left) =0.891 in JillX Y-bar(Top) = 1.781 in R Fi Y-bar(Bat) 22 1.761 in Iiii--k- Equivalent Properties: Area,Ax = 1,656 in"2 inertia,Ixx =2.074 in"4 Inertia, lyy =0.7612 in"4 . Inertia, Ixy =0,000 in"4 I Torsional,J = 1.288R In"4 Y __. Modulus,Sx(Top) = 1.164 in"3 Section Diagram Modulus, Sx(Bot) = 1.164 inn Modulus,Sy(Left) =0.055 in^3 Modulus,Sy(RIght) =0.655 in"3 Plastic Modulus,Zx = 1.568 In^3 Plastic Modulus,Zy = 1.029 I03 - Radius,rx = 1.11E in Radius,ry =0.670 in Basic Properties of Shapes in Section:(Local Axis, for n=f) Sh,No. Shape Modular Width height %0 Yo Ax lxx Iyy Railo(n) In in in In 111"2 in"4 Inm 1 Tuhe 1.00 1,781 1,781 0.00 -0.891 0.828 0.3806 0.3806 - 2 tube 1.00 1.781 1.701 0.00 0.89 0.828 0.3806 0 3506 Additional Properties of Shapes in Section:(Local Axis, forn=1) Sh.No. Shape .1 Sx Top Sy-Right Zx Zy rx ry in"4 In"3 IM3 In"3 In"3 In in 1 Tiibn 0.6344 0.4274 0.4274 05144 11.5144 0.678 0..670 2 Tutb 0.6344 0.4274 0,4274 0.5144 0.5144 0.678 0.678 Summary of Section Properties Sh,No. Sucllon Width Height Xo Yo Ax Iox lyy In In m In In"2 in'4 in"4 1 Secsonl 1.781 1.562 0.00 0,00 1656 2.074 0,7612 WELCOME RAMP CALCS-IBC 2018 Page 40 . NN Calculation Procedure 1) Closed Shapes: The geometric properties for closed shapes are computed by using the Polygon method. Ail closed shapes are represented by closed polygons, Curvilinear and Circular shapes or edges are represented by several straight line segments-The properties of the overall shape are computed by geometric summation of the properties of a trapezoid defined by projection of two consecutive points of the cross-section on to the x and y axis. 2) Open Shapes: The geometric properties for open(thin walled)shapes are computed by using the Polyline method. All open shapes are represented by polylines. Curvilinear and circular shapes or edges are represented by several straight line segments.The properties of the overall shape are computed by geometric summation of the properties of a line defined by projection of two consecutive points of the cross-section on to the x and y axis For details refer to the User's Manual WELCOME RAMP CALCS-IBC 2018 Page 41 r r 0 TRACTION TREAD LOAD TABLES rn PLArJKIN) (a Plank Description bPlank: Traction Tread Widlh: 12" Guage: 13 GA r CtlannttHeiQht a 1I2"Channel Height Se: 027 In"3 Se: 0.174 In43 ',Amax: 5335 Iran Molars 3438 ib-in 2• -hawitai it 2%0 T-0 4'.0 —5'-0 8'-0 7.0 8'43 9'0 10'-0 U 889 396 222 142 89 73 56 44 36 Y 0 0,057 0,129 0.229 0.357 - 0.514 0.7 < 0.915 1.158 1.429 n C 989 593 w 445 356 296 254 222 198 178 D 0.045 0,103 0.183 0286 0.412 0.56 0.732 0.626 1.143 t td cv 1tlr'G}rarnalHaight ,T ry IF° U 573 255 143 92 64 47 36 28 23i; D 0.07 0157 0.279 0.436 0.627 0.854, 1,115 1.411 1,742' C 573 362 287 229 191 164 143 127 115 0 0.058 0.125 0.223 0.349 0.502 0,683 0.892, 1.129 1.394 Notes: 1 `8 ti 10 7 Q/t' U =Uniform Load,psi C =Concentrated Load,psf p = Deflection,in. 1.)Allowable loads are based on the latest edition of AISI, 1986 Edition wt 12/11/89 Addendun. 2,)This table is alheoreficalcelcu1MMMn of the allowable loads and deflections for',he specified spans. There are no les"results to verify the aclural load carrying capabAAies.This table should bo used es e reference only, m 3,) Loads and de actions are based or side charnel defecttxn only.and does not account for strut loading of the grating surface. ao CD w ni rrl 0 TRACTION TREAD LOAD TABLESrrl , i�S �T` Y Pank;1eSCrlpliOn Plank; Traction Tre35 b Widlh: 12" 0uage. 11 GA 2.01100e1i1e(Qht I 112"Channel Hclyht 5e: 0,541 in''.3 Se: 0,331 h 3 0 Wmax. 10690 Ibrtn Mmax: 6541 I9-1n 2"Channel Naloht 2'-0 3'-0 '-0 -0 -0 /'-0 5 6'-0 7 9%0 10'-0 U 1782 792. 4445 ! 255 198 _ 145 111 ' 80 71 ' P ` 0.028 0,064 , 13 0.177 0254 0.346 0.452 0,572 0.706 +r n C 1782 1188 891 713 _ 504 509 r 445 398 356 — I 0 0.023 0.051 0.09 0.141 0.203 0277 , 0-362 0.468 0.565 C) 5112"Channel 1101901 C. n 2'-0 3-0 4'-0 S-0 6'-D T-0 8'-0 _ 1r-0 10'a ry U 1090 484 273 174 121 89 68 54 44 0 0 0 035_ 0.079 0,14 0219 0,315 0,429 0.581 0.71 0.1178 cc C 1090 727 545 436 363. 311 273 242 218 O 0028 0,063 0.112 0,175 0.252 0,343 0.449 0.568 0,701 Notes: U=Uniform Load,psi C•Concentrated Load,psf 0=Deefect on.ln, 1.)Alkwable loads are based'on the latest edition of AISI, 1986 Edition w/17/1 118 9 Addendum, 2)This table is a theoretical calcUation of the eIk wableloads and deflections lot the speced spans.There are no test results to verify the active'load carrying capa5Ultes.This lade sNoutd be used es a reference only_ 3.)Loads and deflections are based on side channel defection only,and does ncl eccoinf for strut loading of the grating surfae. b la) 0o Co