Loading...
Specifications P U p2a2s__3- c Zv—r OFF, 1411-i o SW 12nd tve SEP 09 'tJf CITY CF TIGARD BUILDING DIVISION Sfructural Engineering Design C9`��fG�x4G PN ks>, to 7 62618PE '- Project Nome : HOBBYKING OREGQN Project Number : SED-081020-42 \? oq %IV%QIAO Dote : O8/26/20 EXPIRES:06-30-2022 Street Address: 14140 72ND AVE 08/27/2020 City/State : PORTLAND, OR 97224 T&Z CONSULTING SERVICES, LLC Scope of Work : STORAGE RACK 1428 N SHEVLIN COURT TEL:9O9.596.1351 FAX:909.596.7180 SEWICKLEY, PA 15143 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mgz Project: Hobbyking Project#:081020-42 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector — 8-to-9__ --._ Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 Type 1 select-hobbykmg.xls Page Z of 8/26/2020 Structural Engineering & Design Inc. 1815'Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081020-42 Design Data 1)The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CBC Section 2209 ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks '2012 RMI Rack Design Manual" ASCE7-16,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr. 36 with minimum yield,Fy= 36 ksi • 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 4000 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Coi:*m Basin Ream to CalrACtICV aace m II gel ace Fr re =In ease game and Anchors Panel Fraire Depth Front View:Down Ask Section A:Cass Aisle fTra'tstierse 7 Frame • Type I select-tiobbyking.ds Page 3 of ( l 6/26/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project Hobbyking Project#:081020-42 Configuration &Summary:TYPE 1 SELECTIVE RACK I — **RACK COLUMN REACTIONS 36" ASD LOADS 80" AXIAL DL= 113/b AXIAL LL= 6,000/b 54" SEISMIC AXIAL Ps=+/- 4,456/b 1. t. BASE MOMENT= 8,000 in-lb 240" 240" 80" 54., N 36" f 80" 36" N. I -- 96" .-- \ 44 -1'---__44" __ -- Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.861, Fa=1.156 3 44 in 240.0 in 5 96 in Component Description STRESS Column Fy=55 ksi SPCRK FH•30/3x3x12ga P=6113 Ib, M=18068 in-lb 0.78-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB416M 4.125 in x 0.06 in Lu=96 in Capacity: 5050 lb/pr 0.79-OK Beam Connector Fy=55 ksi Lvl 1:4 pin OK I Mconn=12963 in-lb Mcap=31729 in-lb 0.41-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.23-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.46-OK Base Plate Fy=36 ksi 7x5x0.375 Fixity=8000 in-lb 0.7-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=2462 Ib) 0.575-OK Slab&Soil 5"thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.66-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 80.0 in 36.0 in 229 lb 114 lb 6,113 lb 16,068 "# 12,963 "# 4 pin OK 2 4,000 lb 80.0 in 36.0 in 457 lb 229 lb 4,075 lb 11,434 "# 9,041 "# 4 pin OK 3 4,000 lb 80.0 in 54.0 in 686 lb 343 lb 2,038 lb . 6,860 "# 5,039 "# 4 pin OK 54.0 in 36.0 in **Load defined as product weight per pair of beams Total: 1,371 lb 686 lb Notes Type I select-Hobbykin9.xls Page Zj of (Lc 8/2C/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project Hobbyking Project#:081020-42 Seismic Forces Configuration:TYPE 1 SELECTIVE RACK Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MN 16.1-2012 Sec 2.6&ASCE 7-16 sec 15.5.3 Ss= 0.861 Transverse(Cross Aisle)Seismic Load i S1= 0.393 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.156 Cs1= Sds/R IFS Fv= 1.900 = 0.1659 Cs-max*Ip= 0.1659 �l� Sds=2/3*Ss*Fa= 0.664 iiiiam Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.498 = 0.0292 Eff Base Shear=Cs= 0.1659 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2654 Cs3= 0.5*S1/R Ws= (0.67*PLRF1* PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0491 = 8,265 lb Ip= 1.0 Cs-max= 0.1659 Vtransv=Vt= 0.1659* (225 lb+8040 lb) PRFl 4.2 z'R . Base Shear Coeff=Cs= 0.1659 Etransverse= 1,371 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFl DL hi wi*hi Fi Fi*(hi+hp/2) 1 4,000 lb 2,680 lb 75 lb 80 in 220,400 228.5 lb 23,764-# 2 4,000 lb 2,680 lb 75 lb 160 in 440,800 457.0 lb 84,088-# 3 4,000 lb 2,680 lb 75 lb 240 in 661,200 685.5 lb 180,972-# sum: P=12000 lb 8,040 lb 225 lb W=8265 lb 1,322,400 1,371 lb 2=288,824 i Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRF2* P) + DL PRF2= 1.0 t•<I.,f E.. I h,;:.,i 1.. .1 Cs1=Sd1/(T*R)= 0.0830 = 8,265 lb (Longitudinal,Unbraced Dir.)R= 6.0 �r Cs2= 0.0292 Cs=Cs-max*Ip= 0.0830 T= 1.00 sec 0 I''') --- Cs3= 0.0328 Vlong= 0.083* (225 lb+8040 Ib) :•Th 1 1, :V f;, a Cs-max= 0.0830 Elongitudinal= 686 lb Limit Stabs Levet Long&seismic shear per upright Level PRODUC LOAD P P*0.67*P1F2 DL hi wi*hi Fl Front View 1 4,000 lb 2,680 lb 75 lb 80 in 220,400 114.3 lb I 2 4,000 lb 2,680 lb 75 lb 160 in 440,800 228.7 lb 3 4,000 lb 2,680 lb 75 lb 240 in 661,200 343.0 lb I sum: 8,040 lb 225 lb W=8265 lb 1,322,400 686 lb Type I select-Hobbyking.xis Page of / t-( 8/26/2020 Structural Engineering & Design Inc. - 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax:909.596.7186 By: Bs Eng:Mgz Project: Hobbyking Project#:081020-42 Downaisle Seismic Loads Configuration:TYPE 1 SELECTIVE RACK Determine the story moments by applying portal analysis. The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 686 lb Tributary arc, oftwo columns Vcol=Vlong/2= 343 lb ornck frame \ I F1= 114 lb i If I :I : Typical Frame made F2= 229 lb .4 two columns F3= 343 lb r��� 0'[� 0 k ,, .'-#� - ': r - Eil L7 Ilil_'_ 0 l ] ¶C rim_r 1 - . rr� r Tonp V e141— w 96" - , , Front View 5ide View Seismic Story Moments Conceptual System COL — Mbase-max= 8,000 in-lb <==- Default capacity h1-eff= hl -beam clip height/2 '' Mbase-v= (Vcol*hleff)/2 = 76 in Vcol IW7 = 13,034 in-lb <===Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 ir = 8,000 in-lb M 1-1= [Vcol * hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2)* h2 'El _ (343 lb *76 in)-8000 in-lb = [343 lb- 114.4 Ib]*80 in/2 = 18,068 in-lb = 11,434 in-lb h1 Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (18068 in-lb+ 11434 in-lb)/2 Mseis(2-2)= (11434 in-lb+6860 in-lb)/2 Elevation = 14,751 in-lb = 9,147 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 80 in 6,113 lb 18,068 in-lb 14,751 in-lb 3,768 in-lb 12,963 in-lb 4 pin OK 2 80 in 4,075 lb 11,434 in-lb 9,147 in-lb 3,768 in-lb 9,041 in-lb 4 pin OK 3 80 in 2,038 lb 6,860 in-lb 3,430 in-lb 3,768 in-lb 5,039 in-lb 4 pin OK I Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(4 Pin)= 31,729 in-lb t*all moments based on limit states level loading Type I select-hobbyking.xls Page (P of f L-/ 8/26/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081020-42 Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: SPCRK FH-30/3x3x12ga 3.000 in Aeff= 0.880 in^2 Iy= 1.000 in^4 Kx= 1.7 Ix = 1.520 in/A- Sy= 0.659 in^3 Lx= 77.9 in Sx = 1.010 in^3 ry= 1.064 in Ky= 1.0 y_ _.j-._•-y 3.000in rx = 1.312 in Fy= 55 ksi Ly= 36.0 in 4 10.10s in I2f= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi }-0.75 in Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:PHI Sec2.1 COLUMN PL= 6,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASO Method Mcol= 18,068-in Ib-- axial load-coeff-0,78376725*P - ---seismic moment-coeff.0.5625*Mcof Sds= 0.6635 Load Case 6::(1+0.14*Sds)D+(0.85+0.I4Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0697 axial load coeff: 0.66002 seismic moment coeff.• 0.7*Mcol 1.4+0.14Sds= 1.4929 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0929 0.85+0.14*Sds= 0.9429 Axial Load=PaX= 1.092899.12 lb+0.94289*0.7*6000 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 4,083 lb = 0.7* 18068 in-lb rho= 1.0000 = 12,648 in-lb Axial Analysis • KxLx/rx= 1.7*77.9375"/1.312" KyLy/ry= 1*36"/1.064" Fe >Fy/2 = 101.0 = 33.8 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*28.5 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 28.5 ksi = 28.5ksi Pa= Pn/c2c Pn= Aeff*Fn 4c= 1.92 = 25090 lb/1.92 = 25,090 lb = 13,068 lb P/Pa= 0.31 > 0.15 Bending Analysis Check: Pax/Pa+ (Cmx*Mx)/(Max*px) _< 1.0 P/Pao + Mx/Max <_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.88 in^2*55000 psi = 484001b/1.92 = 1.01 in^3 *55000 psi = 48,400 lb = 25,208 lb = 55,550 in-lb Max= My/52f Pcr= n^2EI/(KL)max^2 = 55550 in-lb/1.67 = n^2*29500 ksi/(1.7*77.9375 in)^2 = 33,263 in-lb = 25,210 lb px= {1/[1-(S2c*P/Pcr)]}^-1 = {1/[1-(1.92*4083 lb/25210 lb)]}^-1 = 0.69 Combined Stresses (4083 lb/13068 Ib)+ (0.85*12648 in-lb)/(33263 in-Ib*0.69)= 0.78 < 1.0,OK (EQ C5-1) (4083 lb/25208 lb)+ (12648 in-lb/33263 in-lb)= 0.54 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 5 is: 75.0% nq loads 4822.40626 lb Axial and M= 9485 in-lb Type I select-liobbyking.xls Page 7 of ( 7 8/26/2020 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne.CA 91750 Tel: 909,596.1351 Fax: 909 596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#: 081020-42 BEAM Configuration:TYPE 1 SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.50 in A)Check compression flange for local buckling(B2.1) L 1.63 in ,I w= c-2*t-2*r T = 1.625 in-2*0.06 in-2*0.06 in = 1.385 in 1 25 in w/t= 23.08 1=lambda= [1.052/(k)^0.5]*(w/t)*(Fy/E)^0.5 Eq. B2.1-4 4.125 in = [1.052/(4)^0.5] *23.08*(55/29500)^0.5 = 0.524 < 0.673, Flange is fully effective Eq. B2.1-1 0.060 in B) check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 50.29 ksi f2(tension)= Fy*(y1/y2)= 102.06 ksi Y= f2/f1 Eq. B2.3-5 Beam= SpaceRak SB416M 4.125 in x 0.06 in = -2.029 Ix=_1.569Jn^4-- k= 4+ 2*(1-Y)^3 +2*(1-Y) Eq. B2.3-4 Sx= 0.729in^3 = 65.64 Ycg= 2.723 in flat depth=w= yl+y3 t= 0.060 in = 3.885 in w/t= 64.75 OK Bend Radius=r= 0.060 in 1=lambda= [1.052/(k)^0.5] *(w/t)*(f1/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.64)^0.5]* 3.885 *(50.29/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.347 < 0.673 E= 29500 ksi be=w= 3.885 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 in bl= be(3-Y) = 1.94 in bottom flange= 2.500 in = 0.773 Web depth= 4.11 F bl+b2= 2.713 in > 1.2825 in,Web is fully effective fl(comp) Determine effect of cold working on steel yield point(Eva) per section A7.2 - Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2) * (r+t/2) 2 0.141 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.385 in = 0.169 in Y3 m= 0.192*(Fu/Fy) -0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 Yt since fu/Fv= 1.18 < 1.2 vog and r/t= 1 < 7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) 1 @nensmn) = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) y1= Ycg-t-r= 2.603 in = 114.48 ksi (tension stress at bottom) y2= depth-Ycg= 1.403 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.283 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.260 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.61 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 20.55 in-k -Structural Engineering & Design Inc. _ - 1815 Wright Ave La Verne.CA 91750 Tel' 909.596.1351_Fax•909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#: 081020-42 BEAM Configuration:TYPE 1 SELECTIVE RACK RMI Section 5.2, PT II Section Beam= SpaceRak SB416M 4.125 in x 0.06 in Ix=Ib= 1.589 in^4 2.50 in Sx= 0.729 in^3 t= 0.060 in E= 29500 ksi 1.63 in 1, Fy=Fyv= 55 ksi F= 300.0 Fu=Fuv= 65 ksi L= 96 in Fya= 59.0 ksi Beam Level= 1 I 1.625 in P=Product Load= 4,000 lb/pair D=Dead Load= 75 lb/pair 4.125 in 0.060 in 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RM72.g,item 8 FOR DL=2%of PL, W= 1.599 IIIIIIIIII III II IIIIIIIIIIIIII IIIIIIIII IIIIIII Rrn= 1-[(2*F*L)/(6*E*Ib+ 3*F*L)] _ �• II 1-(2*300*96 in)/[(6*29500 ksi*1.589 in^3)+(3*300*96 in)] = 0.843 if F= 0.95 Then F*Mn=F*Fya*Sx= 40.84 in-k Thus,allowable load - IMEEI per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) = 40.84 in-k*8* 2/(96in*0.843 * 1.599) = 5,050 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (5050 lb/2)*96 in * (1-0.843)/8 = 4,757 in-lb @ 5050 lb max allowable load = 3,768 in-lb @ 4000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*1.589 in^4)] = 0.533 in = 0.812 in Deflection at imposed Load= 0.422 in if Dmax= L/180 Based on 4/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*1.589 in^4*2/[180*5*(96 in)^2*0.812) = 5,345 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 5,050 lb/pair Imposed Product Load= 4,000 lb/pair Beam Stress= 0.79 Beam at Level 1 c- 2. Structural Engineering & Design Inc. 1815 WrightAvP t a Verne CA 91750 Tel. 909 596 1351 Fax 909 596 7186 By: Bs Eng:Mqz Project: Hobbyking Project#: 081020-42 4 Pin Beam to Column Connection TYPE 1 SELECTIVE RACK he beam end moments shown herein show the result ot the maximum induced fixed end monents form seismic+static loads and the code mandated minimum value ot 1.5%(DL+PL) P1 Mconn max= (Mseismic+ Mend-flxity)*0.7091ho Q lir rho= 1.0000 = 12,963 in-lb Load at level 1 or O 12" 12" Connector Type= 4 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2* PI/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4*55000 psi*0.1507In^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha* Fu*diam *tcol/Omega = 2.22*65000 psi*0.438 in*0.105 in/2.22 = 2,989 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3+P4 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(4.5"/6.5")+P1*(2.576.5")+P1*(0.576.5") = 2.154* Pl Mcap= Sclip* Fbending C*d= Mcap= 2.154 d= E/2 = 0.127 in^3*0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(2.154*d) = 4610.1 in-lb/(2.154*0.5 in) Thus, P1= 2,989 lb = 4,281 lb Mconn-allow= [P1*6.5"+P1*(4.5"/6.5")*4.5" +P1*(2.5"/6.5")2.5"+P1*(0.5"/6.5")*0.51 = 2989 LB*[6.5"+(4.576.5")*4.5"+(2.5"/6.5")*2.5"+(0.576.5")*0.5"] = 31,729 in-lb > Mconn max, OK Type I select-liobbykmg.xls Page of f / 8/26/2020 • Structural Engineering & Design I nc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax; 909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081020-42 Transverse Brace Configuration:TYPE 1 SELECTIVE RACK Section Properties Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 in^2 Area= 0.292 in^2 .500 i" r min= 0.430 in r min= 0.430 in 1.500 in Fy= 55,000 psi Fy= 55,000 psi !� K= 1.0 K= 1.0 • 4C= 1.92 I o.o s In 1.250 i" I 0 0751, I.2so m 1 i Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6.::(Z±O L 4.xSd .85+0.14Sds)*B*P+10.7*rho*EJ<=1.0,ASD Method III o Vtransverse= 1,371 lb Vb '11.111.. Vb=Vtransv*0.7*rho= 1371 lb * 0.7 * 1 (kl/r)= (k*Ldiag)/r min = 960 1b = (1 x 61.2 in/0.43 in) Ldiag= [(D-B*2)^2 +(H-6")^2]^1/2 = 142.3 in Ldiag = 61.2 in Fe= pi^2*E/(k1/r)^2 /fir Pmax= V*(Ldiag/D)*0.75 = 14,378 psi / Pmax = 1,001lb axial load on diagonal brace member Since Fe<Fy/2, 3">yyp Pn= AREA*Fn Fn= Fe B = 0.292 in^2* 14378 psi = 14,37B psi Typical Panel = 4,198 lb configuration Fallow= Pn/4 Check End Weld = 4198 lb/1.92 Lweld= 3.0 in = 2,187 lb Fu= 65 ksi trnin= 0.075 in Pn/Pallow= 0.46 <= 1.0 OK Weld Capacity= 0.75*tmin*L* Fu/2.5 = 4,388 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 960 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 44 in)/0.43 in = 27,821 psi = 102.3 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/4c = 27,817 psi = 0.292in^2*27817 psi = 8123 lb/1.92 = 8,123 lb = 4,231 lb ' Pn/Pallow= 0.23 <= 1.0 OK Type I select-liobbyking.xls rage(0 of C 8/26/2020 Structural Engineering & Design I nc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081 020-42 Single Row Frame Overturning Configuration:TYPE 1 SELECTIVE RACK Loads Critical Load case(s): A 1)RMI Sec 2.2,item 7: (0.9-0.25ds)D+(0.9-0.205ds)*B*Papp- E*rho hp e Sds= 0.6635 v Vtrans=V=E=Qe= 1,371 lb (0.9-0.25ds)= 0.7673 ztt/ 41 j DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.25ds) 0.7673 PRODUCT LOAD PER UPRIGHT=P= 12,000 lb B= H h Papp=P*0.67= 8,040 lb rho= 1.0000 Wst LC1=Wst1=(0.7673*D+0.7673*Papp*1)= 6,341 lb Frame Depth=Df= 44.0 in T 1 Product Load Top Level, Ptop= 4,000 lb Htop-Iv1=H= 240.0 in DL/Lvl= 75 lb # Levels= 3 4 of-Pi Seismic Ovt based on E,E(Fi*hi)= 196,091 in-lb #Anchors/Base= 2 height/depth ratio= 5.5 in hp= 48.0 in SIDE ELEVATION A) Fully Loaded Rack h=H+hp/2= 264.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 196,091 in-lb = 6341 lb*44 in/2 = (196091 in-lb- 139502 in-lb)/44 in = 139,502 in-lb = 1,286 lb Net Uplift per Column Net Seismic Uplift= 1,286 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip* Ptop >=350 lb for H/D >6.0 Movt= [V1*h + V2*H/2]*rho = 0.1659 *4000 lb = 179,670 in-lb = 664 lb T= (Movt-Mst)/Df Vleff= 664 lb Critical Level= 3 = (179670 in-lb-71321 in-lb)/44 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1659 = 2,462 lb Net Uplift per Column = 37 lb Mst= (0.7673*D+ 0.7673*Ptop*1)*44 in/2 = 71,321 in-lb Net Seismic Uplift= 2,462 lb Anchor Check(2)0.5"x 3.25" Embed HILTI KWIKBOLT TZ anchor(s) per base plate. Special inspection is required per ESR 1917. - Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (643 Ib/1961 Ib)^1 + (342 lb/2517 Ib)^1 = 0.46 <= 1.2 OK Top Level Loaded: (1231 lb/1961 Ib)^1 + (165 Ib/25171b)^1 = 0.69 <= 1.2 OK Type I select-hobbyking.xls Page (( of ((/ 8/26/2020 structural • Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081020-42 Base Plate Configuration:TYPE 1 SELECTIVE RACK Section '— a —' Baseplate= 7x5x0.375 Eff Width=W= 7.00 in a= 2.50 in e• Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d = 5.00 in Column Width=b= 3.00 in N=#Anchor/Base= 2 2 I b 14— L Column Depth=dc.= 3.00 in Fy= 36,000 psi L w = 2.00 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*sds)D+0.75*[(1.9+0.195ds)*B*P+0.751-0.7*rho*E/<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0696675 * 112.5 lb+0.75*(1.49289* 0.7 * 6000 lb) COLUMN PL= 6,000 lb = 4,823 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0697 = 8000 in-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.4929 = 4,200 in-lb Eff( - B . -----Axial Load P= 4,823 lb Mbase=Mb=-4,200-in-lb — Effe Axial stress=fa= P/A= P/(D*W) M1= wL^2/2=fa*L^2/2 = 138 psi = 276 in-lb Moment Stress=fb= M/S = 6*Mb/[(D*B^2] Moment Stress=fb2 = 2*fb* L/W = 102.9 psi = 58.8 psi Moment Stress=fbl= fb-fb2 M2= fb1*L^2)/2 F = 44.1 psi = 88 in-lb • M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 78 in-lb = 442 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c 0.70 OK = 2,800 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -2,331 lb No Tension Cross Aisle Loads O 1 load case R^+rseczt,Item a:r,+a.115dVOL+(f.n.14S05)PL'O75*EL%75<=1.4ASOMethod Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 4,823 lb "when the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 102,948 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 44.0 in = 2,340 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 7,163 lb I the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T Inca L=Base Plate Depth-Col Depth= 2.00 in Ta MuIII a ml1l) fa= P/A= P/(D*W) M= wL^2/2= fa*L^2/2 I-, I b 1 = 205 psi = 409 in-lb/in Elevation Uplift per Column= 2,462 lb Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 1,231 lb c= 2.00 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.65 OK = 1,231 in-lb Splate= 0.117 in^3 1-fb/Fb1*0.75= 0.292 OK Type I select-hobbykmg.xls Page (L of ( 8/26/2020 Structural Engineering & Design Inc. . 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mqz Project: Hobbyking Project#:081020-42 • Slab on Grade Configuration:TYPE 1 SELECTIVE RACK P slab a Concrete .` a 1 fc= 4,000 psi D b e tslab=t= 5.0 in "I I Cross tell- 5.0 in �������������� ����������� ��II���iiiiiiiiiiiiiii������������� - c - = Aisle phi=0= 0.6.- ' . r x -►I ,, c Soil t Y B fsoil= 1,000 psf . L Down Aisle Movt= 196,091 in-lb SLAB ELEVATION - Frame depth= 44.0 in Baseolate Plan View Sds= 0.664 Base Plate 0.2*Sds= 0.133 . -, - Erfec.Baseplete width=B= 7.00 in width=a= 3.00 in , -" tlft 'J'f•Itzti Effec..Baseplate Depth=D=_5.00 in -. __- --depth=b=3:00-in- _ __ _... _...--.-._ -_.(3=B/D= 1.400 __._.__---... midway dist face of column to edge of plate=c= 5.00 in F'c^0.5= 63.20 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+ rho*E RMI SEC 2.2 EQTN s unfactored ASD load = 1.3327* 113 lb+ 1.3327*0.7*6000 lb+ 1 *4456 lb PRODUCT LOAD=P= 6,000 lb per column = 10,204 lb • unfactoredASO load Load Case 2) (0.9-0.2Sds)D +(0.9-0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 - Papp= 4,020 lb per column = 0.7673* 113 lb+ 0.7673*0.7*4020 lb+ 1 *4456 lb P-seismic=E= (Movt/Frame depth) = 6,702 lb - = 4,456 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*113 lb+ 1.4*6000 lb B=4 7000 . = 8,535 lb w4 a .. . rho = f r4 c, :. Load Case 4) 1.2*D + 1.0*P+ 1.0E ACI 318-14 Sec 5.3.1 Sds= 0.6635 = 10,592 lb Eqtn 5.3.1e 1.2 + 0.2*Sds= 1.3327 Effective Column Load=Pu= 10,592 lb per column 0.9-0.20Sds= 0.7673 Puncture Apunct= [(c+t)+(e+t)]*2*t = 190.0 inA2 Fpunctl= [(4/3 +8/(3*p)] *x*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 122.8 psi = 0.553 < 1 OK Fpunct2= 2.66*A,* (F'c^0.5) = 100.9 psi Fpunct eff= 100.9 psi. Slab Bending Pse=DL+PL+E= 10,592 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 1,525 in^2 = 39.05 in = 14.5 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 12.3 in = (fsoil*x^2)/(144*2) = 4.17 in^3 Fb= 5*(phi)*(fc)^0.5 = 524.4 in-lb fb/Fb= M/(S-slab*Fb) = 189.74 psi = 0.663 < 1,OK Type I select-tlobbyking.xls Page 4.3 of ( 8/26/2020 i_ tructur a Engineering & Design Inc. • 1815 Wright Ave La Verne. CA 91750 Tel. 909.596.1351 Fax: 909.596.7186 By: Bs Eng:Mgz Project: Hobbyking Project#:081020-42 Configuration&Summary:TYPE 2 SELECTIVE RACK **RACK COLUMN REACTIONS 36" ASD LOADS 80" . AXIAL DL= 113/b AXIAL LL= 6,000 lb 54" SEISMIC AXIAL Ps=+/- 5,446 lb 1' BASE MOMENT= 8,000 in-lb 240" 240" 80 54„ N 36" 80II" 36" N `. I' N 1f 108" ,1- 7 36" - Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.861, Fa=1.156 3 36 in 240.0 in 5 108 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-30/3x3x12ga P=6113 Ib, M=18068 in-lb 0.77-OK - Column&Backer None None None N/A •• Beam Fy=55 ksi SpaceRak 56556M 5.5 in x 0.06 in Lu=108 in Capacity: 6643 lb/pr 0.6 OK Beam Connector Fy=55 ksi Lvl 1:4 pin OK I Mconn=12121 in-lb Mcap=31729 in-lb 0.38-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.17-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.44-OK Base Plate Fy=36 ksi 7x5x0.375 Fixity= 8000 in-lb 0.7-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=3370 lb) 0.767-OK , Slab&Soil 5"thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.76-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 80.0 in 36.0 in 229 lb 114 lb 6,113 lb 18,068 "# 12,121 "# 4 pin OK 2 4,000 lb 80.0 in 36.0 in 457 lb 229 lb 4,075 lb 11,434 "# 8,198 "# 4 pin OK 3 4,000 lb 80.0 in 54.0 in 686 lb 343 lb 2,038 lb 6,860 "# 4,197 "# 4 pin OK 54.0 in 36.0 in **Load defined as product weight per pair of beams Total: 1,371 lb 686 lb Notes Type 2 select-hobbyking.xle Page C( of I N 8/26/2020