Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report
xej ££96-£Z£-6SS . 0096-£"c£-6SS • Zl9£6 e!u.io3!it)`s!AolD . any,blsUlloJ cm: AdOD 301dd0 £8986 'YM 'aanno)UUA Sit a}inS ';aaagS ,1,1I£ as OZT6L dnoao suopnloS Ieilw alppw uisaa LAM :acid paaodaad or-OE-91iiva i4OlitielI: 4,,..--po A_ OZOZ `EL 'lady r �� 99E61 # 'JCS V Mt," £ZZG6 '2TO Walt _4 'P I Hai silouaS MS OOZZZ la asvm ('I'.L) SNOLLVznD1VD ONIII3gNIONg IVIMIDnusS i;Iosb1Ala OMr1:n1 J CAM91.1 JOr AL IO OM2Z el,dV r n 7 MOP a°,�'-,40 zi 91 9 5 O O/C. J Y ��^7 ��012 - ozozd2 Chase - Greenway Town Center Design Parameters Tigard, Oregon Code 2019 OSSC Wind V= 97 mph Basic Wind Speed (3-second Ultimate) Exposure C Seismic Ss=0.856, Si=0.397 SDS=0.685, SD1=0.503 1=1.0, Ip=1.0 R=3.5 (Intermediate Reinforced CMU Shearwall) Steel fy (W.F.)A992 = 50 ksi, UNO Steel fy (Tube)A500 Grade B = 46 ksi, UNO Steel fy (Pipe)A53 Grade B = 35 ksi, UNO Steel fy (Misc.)A36 = 36 ksi, UNO Light gage studs fy = 50 ksi minimum, UNO High Strength Bolts =A325N Typical Bolts =A307 Concrete f'c (Foundation) = 2500 psi, UNO Concrete f'c (walls) = 3000 psi, UNO Concrete f'c (Columns) = 3000 psi, UNO Concrete f'c (Floor desks) = 3000 psi, UNO Rebar#3 bars = Gr. 40, fy = 40,000 psi, UNO Rebar#4 and larger bars = Gr. 60, fy = 60,000 psi, UNO Welded Rebar =A706 Dimensioned Lumber = DF#2, UNO Glulam Beams = 24F-V4 @ simple spans, UNO = 24F-V8 @ Cantilever spans, UNO Wood Connectors = Simpson Strong Tie, UNO (Manufacture) (Equivalent may be used) Masonry f'm = 1500 psi, UNO Allowable Soil Bearing Pressure = 1500 psf (code minimum) Note: The above material properties are typical properties and apply unless noted otherwise within this calculation package. The materials listed are not necessarily used in this design. Please see the following calculations for the actual types of materials used for this specific design. Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: C IW 0112020 ATC Hazards by Location OTCHazards by Location v11 p ATC Hazards by agape Ti., 16 Long-period transition period(s) Search Information SsRT 0.856 Probabilistic risk- ( ) v targeted ground motion 02s ,,^i$z`t1 SsUH 0.968 Factored uniform-hazard Address: 12100 SW SCROLLS FaHRY RD,TIGARD,OR, ¢: spectral acceleration(2%probability of """^7uver exceedance in 50 years) Coordinates: 45.443815,-1228006118 zc 237 R nbaltll land Se0 1.5 Factored deterministic acceleration value(02s) Elevation: 237g look Hi115borbo O o Seat/ rton ^uresham S1RT 0.397 Probabilistic risk-targeted ground motion(1.05) Timestamp: 2020-02-11T18S7:71.540Z ice} C3 Mt exceedance in 50 years) S1UN 0.458 Factored uniform-hazard Type: Seismic j... Nallrii spectral acceleration(try,pmbatlility of Reference ASCE7.76 « , _.,, S1D 0.6 Factored deterministic acceleration value(1.Os) Document Go- �_gle ' �:.,,,,,-AN,,,,,,, Map data 02020 Couple PGAd 0.5 Factored deterministic acceleration value(PGA)Risk Category: 9 Site Class: 0-default 'See Section 11.4.8 Basic Parameters The results irrdoated hem DO NOT ratedany state or local amendments to the values or any delineation lines made during Name Value pa pg� code Wrt5onppd sgn.Users should conirtn any ouyour obtained from this tool with the local Authority Having Jurisdictionfore irrg Ss 0.856 MCER ground motion(period=D2s) Disclaimer Hazard loads are provided bythe U.S.Geological Survey Seismic Deli W b S--- Si 0.397 MCER ground motion(period-1.0s) SMs 1.027 Site-modified While the iniommation presented on this website is believed lobe correct,ATC and Its sponsors and contributors assume no value or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific a without Sun �sD®ctral acceleration value�'--� �, -1 ` competent examination and verification of Its accuracy,suitabl and applicability application ATC not intend that the use of this information replacefof s ley uch competent professionals, or others,licensed professionals.andATC does Numeric seismic d in the field of practice,nor to substitute for the standard of care judgment required oof such professionals f in me retie ndexperience applying pplthe results Of o $OS 0.685 esign value at 0.2s SA report provided by this website.Users of the information from this webafte assume al liability arising from such use.Use off the output of the Sr, Numeric seismic design value at 1.0s SA /'a, this website does not imply approval by the governing building pods bodies responsible for builtlin O, $�,/ building site described by latitude/longitude location In the report g code approval and interpretation for the 'See Section 11.4.8 �/ •-Additional Information Name Vohs. Description }) LJ SDC 110 Seismic design category F. 1.2ee ,,,r��alaa Site amplification factor at 025 Fv Site amplification factor at 1.0s CR5 0.884 Coefficient of risk(0.2s) 1.1 CR1 0.866 Coefficient of risk(1.0s) PGA 0.391 MCEO peak ground acceleration Fp.a 1.209 Site amplification factor at PGA PGAN 0.473 Site modified peak ground acceleration mgrs:llhezerCtatoau ,orgdifseismicaete45,443815Sing:122800ei188addreas=1210D SW SCROLLS FERRY ROI=TIGARO%2C OR 2 �i ht� N sY/hatasagyunciLory#/yafsmtc?fat-45.4438t581ng=.1226006tt88atldress=12100 SW BCHOILS FERRY RD%2C TIGARDq,2C OR 2/2 OTCHazards by Location Search Information w , ��* Ate 1/ 'r • Address: 12100 SW SCHOLLS FERRY RD,TIGARD,OR `� Coordinates: 45.443815, -122.8006118 rlbl i i I �� ` W soak Hill; boro° (aid'_ o Elevation: 237ft � , Oeav rton Gresham Timestamp: 2020-02-11T18:48:27.172Z `� � ?5 Mt k Natfoi Hazard Type: Wind } :;if ©cg�e Map data©2020 Google ASCE 7-16 ASCE 7-10 ASCE 7-05 MRI 10-Year 67 mph MRI 10-Year 72 mph ASCE 7-05 Wind Speed 85 mph MRI 25-Year 72 mph MRI 25-Year 79 mph MRI 50-Year 77 mph MRI 50-Year 85 mph MRI 100-Year 82 mph MRI 100-Year 91 mph Risk Category I 91 mph Risk Category I 100 mph (...._Risk Category II 97 mph) Risk Category II 110 mph Risk Category III 103 mph Risk Category III-IV 115 mph Risk Category IV 107 mph The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area—In some cases, this website will extrapolate past the last wind speed contour and therefore,provide a wind speed that is slightly higher.NOTE: For queries near wind-borne debris region boundaries,the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region. Mountainous terrain,gorges,ocean promontories,and special wind regions shall be examined for unusual wind conditions. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound Judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this wehsite fines not imnlv annroval by the nnvernina huildina rode!Indies resnnnsihle for huildinn cnde annrnvai anri internretatinn for+'-- https:/lhazards.atcouncil.orgl#/wind?lat=45.443815&Ing=-122.8006118&address=12100 SW SCHOLLS FERRY RD%2C TIGARD%2C OR , Oregon Snow Loading The design ground snow of any location in the state of Oregon may be determined by entering the latitude and longitude of your site into the boxes below. The tool provides the design ground snow load (pg in ASCE7*) for your site. The design ground snow load 'values can also be viewed on the online map. Users are strongly recommended to review the Map Usage Notes. Ground snow loads are very sensitive to geographic location, and particularly sensitive to elevation. It is recommended that the latitude and longitude values be entered with a precision of 0.001 (about 105 yards). *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. Latitude - Longitude Lookup Results Latitude: 45.443815 Longitude: -122.8006118 Snow Load: 10.0 psi Modeled Elevation: 203 ft Site Elevation versus Modeled Grid Elevation Site elevation refers to the elevation (above sea level, in feet) of the location for which the snow load is required. The modeled grid elevation is the average elevation of the 4 km (about 2-1/2 miles) grid cell that was used in the snow load modeling. In relatively flat terrain, the two elevations will likely be the same or very similar. In sloped or mountainous terrain, the two elevations may be quite different. The design ground snow load may be underreported for some locations where the site elevation is higher than the modeled grid elevation. Consult the Map Usage Notes if your site elevation is more than 100 ft. above the modeled grid elevation shown, or if your site is at or near the top of a hill. Oregon Design Ground Snow Load Look Up Results It is Important that the user of this tool understand the principals and limitations of the modeling used to create it. Ground snow loads can vary dramatically over short distances due to changes In precipitation and elevation. It is critical to use good engineering judgment when interpreting and using the results reported by this tool. The user is recommended to review the online map, to gain a better understanding of the variations and range of magnitudes of the ground snow loads in the vicinity of the site location. In remote regions at high elevation, reliable snow data was not available during the creation of the map. A site-specific case study is required to determine the design ground snow load in these areas. The ground snow load values on the map are based on extrapolation, and are not recommended for design. See the Map Usage Notes for the regions that require a site-specific case study. It is recommended that the local building official having jurisdiction at the site be consulted for minimum design ground snow or roof snow loads. The reported design ground snow loads must be adjusted as required by Chapter 7 of ASCE7* for site exposure, roof slope, roof configuration, etc. Only the properly adjusted loads can be used to design roof structural elements. Oregon requires a minimum roof snow load of 20 psf(pm in ASCE7*) for all roofs, plus a 5 psf rain-on-snow surcharge for many roof types, resulting in a 25 psf minimum roof design load for most roofs. See the Map Usage Notes or Snow Load Analysis for Oregon, Part II for further Information. *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. t Copyright 2010-2013 seao.org All rights reserved. 1 MO :Jeeu16u3 p owx'99E66 :aweN e11d OZOZ/Ll/E :ewea#uUd sa}eloossy 6uno,pea8 OZOZ 146ii/do0 peep IIeM Jsdbs =: nuao'IIeM1a Jsd91 =: paesuewia z J 0z = �ooall z Jooall =: 1ooall al al z ti> _ ,1ooala Z3.1 aw10 =: lowla al al peol arqil dSd OZ • peol peea dSdkzt 111, snoeueileos!W 191 leolueyoen 18'0 uoRelnsul 19'1, 3ujos/6uillao papuedsnsi 1Z 1 6uluae.y joi:m 1 18'6 ! pooMAld .,8/9 dShcb'b 6u�oo�l( }O0111\ 100.1„� (4eid)lOOJ u!ew U 101 _ Snow Load pg := io•psf Ground Snow Load Slope roof �= is Ce := 1.o Exposure Factor Ct := 1,o Thermal Factor I := 1.o Importance Factor pf.1 := 0.7•Ce•Ct•I•pg pf.1 = 7•psf pf.min pg'i pf.min = io•psf pf := max(pf.1 ,pf.min) pf = io•psf Cs := 1,0 PS Cs'pf LLsnow Ps LLsnow = 1o•psf Roof live load will govern over snow load Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 6 The following calculations will address the following: 1. Typical Soffit brace design 2. Cash RecyclerAnchorage 3. E-ATM anchorage 4.AHD anchorage 5. Exterior/Through Wall ATM Anchorage 6. Safe anchorage 7. (N) Openings in (E) CMU Wall 8. (N) RTUs on the Roof 9.All other work, if required or not addressed in this package, is by others. Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW ITEM#1 TYPICAL SOFFIT DESIGN: Design the bracing for the typical soffits found on the floors. Design Wall brace for 5psf lateral wall force, hsoffit 5ft Soffit depth hbrace 4.5ft Height of brace from base of soffit sbrace 4ft brace spacing - max brace spacing wiat s.psf L :_ ](hbrace)2 + (hbrace)2 L = 6.364ft (hsoffit) 2 9ft lb Vlat wlat'Z h + a 'Mat Vlat = 36,389 ft brace Flat Vlat'sbrace Flat = 145,556lb Paxial Flat axial = 205,847 lb Brace Axial Load Use: (N) 362S162-33 (min.) See attached Use 2-#10 SMS for the bracing connection: = 205,847lb applied load Paxial number of screws Nscrew 2 Vscrew 1771b allowable load fora #10 screw to 20 ga material Vallow 2.1771b Vallow = 354 lb axial = 0.581 < 1, so connection is OK Vallow Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366,xmcd Engineer: CW {) CFS Version 10.0.4 Page 1 h(�c Section: 3625162-33.cfss Brad Young 3625162-33, 33 ksi Stud Brad Young &Associates, Inc. SSMA Library Rev. Date: 9/26/2016 12:00:00 PM By: RSG Software Printed: 2/12/2020 11:00:35 AM + I Section Inputs Material: A1003 ST Grade 33H Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Net Section Ratio (Lnet/L) 0.1875 Stud, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.5000 270.000 0.076500 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.076500 Single 0.000 0.0000 0.8125 3 3.6250 90.000 0.076500 Cee 0.000 1.5000 1.8125 4 1.6250 0.000 0.076500 Single 0.000 0.0000 0.8125 5 0.5000 -90.000 0.076500 None 0.000 0.0000 0.2500 Member Check - 2016 North American Specification - US (ASD) Material Type: A1003 ST Grade 33H, Fy=33 ksi Design Parameters: Lx 6.400 ft Ly 6.400 ft Lt 6.400 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k4 0 k Red. Factor, R: 0 Lm 20.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 0.2060 0.0000 0.0000 0.0000 0.0000 Applied 0.2060 0.0000 0.0000 0.0000 0.0000 Strength 1.2193 4.2854 0.5214 1.5527 1.2013 I CFS Version 10.0.4 Page 2 Section: 362S162-33.cfss Brad Young 362S162-33, 33 ksi Stud Brad Young &Associates, Inc. SSMA Library Rev. Date: 9/26/2016 12:00:00 PM By: RSG Software Printed: 2/12/2020 11:00:35 AM Effective section properties at applied loads; Ae 0.26211 in^2 Ixe 0.55123 in^4 Iye 0.09935 in^4 Sxe(t) 0.30413 in^3 Sye(1) 0.18503 in^3 Sxe(b) 0.30413 in^3 Sye(r) 0.09131 in^3 Interaction Equations NAS Eq. H1.2-1 (P, Mx, My) 0.169 + 0.000 + 0.000 = 0.169 <= 1.0 NAS Eq. H2-1 (Mx, Vy) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 NAS Eq. H2-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1. 0 ) () ITEM #2 -Cash RecyclerAnchorage Seismic Overturning/Sliding Forces on the Cash Recvcler Unit There will be a new cash recycler unit at the interior building with a maximum weight of 1141 lbs. The unit is an an interior component and will not be experience any wind loading. Determine the seismic anchorage for the cash recycler. Seismic Forces for the unit attachment will be perASCE 7-16 Eq. 13.3-1. Seismic Loading Site Class D Sds := 0685 Spectral Response Acceleration, Short Period Ip := 1.0 Importance Factor ap := 1.o Storage Cabinet per Table 13.5-1 RP := 2.5 Storage Cabinet per Table 13.5-1 z := o•ft Height of Attachment H := 14•ft Estimated Height of roof Component Weights Wp := 1141.1b Max weight per mfr. (1041# self wt. + 100# cash) Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Il 0.4•a •Sds•I• •W p R p p • 1 + 2• H) ASCE 7-16 EQ. 13.3-1 p / Fp1 = 125lb Fp.max := 1.6.Sds•Ip•Wp Fp.max = 1250.5361b Fp.min := 0.3•Sds•Ip•Wp Fp.min = 234.4761b governs Fp := Fp.min Fp = 234.476 lb Project required seismic load Unit Dimensions h := 37.2•in Unit Height d := 36.3in Unit Width I := 16.5•in Unit Length Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW �2. Overturning Forces- Long Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(2•h) OTM = 363.437ft•Ib RM := (9.9— 0.2.Sds)•Wp•2•d RM = 1316.757ft•Ib Resisting moment RM = 3.623 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design (Long Direction) There will be a minimum of 2 anchors to resist the overturning forces. d1 := 7.9in spacing between anchor bolts N := 2 Min. number of Anchors resisting uplift F = 234.476 lb OTM = 363.437•Ib•ft RM = 1316.757ft•Ib RM = 1316.757ft•Ib Uplift :_ (OTM�— (RM) Uplift = —1448.981 lb 1 Uplift TCR1 := N Tension Force TCR1 = —724.04 lb Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 13 Overturning Forces-Narrow Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(1•h) OTM = 363.437ft•lb RM := (0.9- 0.2.Sds)•Wp•21.1 RM = 598.526ft•lb Resisting moment RM OTM 1.647 >1.0 Anchors are not required to resist overturning Overturning Analysis -Anchor Design Narrow Direction) There will be a minimum of 2 anchors to resist the overturning forces. 11 := 1 N := 2 Min. number of Anchors resisting uplift F = 234.476 lb OTM = 363.437•lb•ft RM = 598.526ft•lb RM = 598.526ft•Ib Uplift := (OTM) (RM) Uplift = -170.974 lb 1 Uplift TCR2 '— N Tension Force TCR2 = -85.487 lb Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Sliding Forces: To resist the seismic sliding forces there will be (4) anchors used to resist the siding forces. F = 234.476 lb Seismic Load for Unit n := a Number of Anchors F VCR1 nP VCR1 = 58.619 lb See anchorage design below: Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW f5 ITEM #3 E-ATM Anchorage: Seismic Overturning/Sliding Forces on the E-ATM Unit There will be E-ATMs at the interior building with a maximum weight of 1550 lbs (including cash loading). The units are an interior component and will not be experience any wind loading. Determine the seismic anchorage for the E-ATMs. Seismic Forces for the unit attachment will be per ASCE 7-16 Eq. 13.3-1. Seismic Loading Site Class D Sds = 0.685 Spectral Response Acceleration, Short Period Ip := 1.o Importance Factor ap := 1.o Storage Cabinet per Table 13.5-1 RP := 2.5 Storage Cabinet per Table 13.5-1 z := o•ft Height of Attachment H = raft Estimated Height of Roof Component Weights Wp issolb Max weight per mfr drawings w/ 100#for cash loading Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW � ', o.a.a •Sds•I •W Fp 1 := p p p • 1 +2•Z ASCE 7-16 EQ. 13.3-1 Rp ` H) Fp 1 = i7olb Fp.max := 1.6•Sds•Ip•Wp Fp.max = 1698.8 lb Fp.min := 0.3•Sds•Ip•Wp Fp.min 318.525 lb governs Fp := Fp.min Fp = 318.525lb Project required seismic load Unit Dimensions h := 48.82•in Unit Height d := 39.80in Unit Width I := 3o.73•in Unit Length Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW \: Overturning Forces- Long Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to act at the center of mass of the unit which is taken as 1/2 h. OTM := FP•12•h' OTM = 647.933 ft•Ib RM := (o.9-o.2•Sds).Wp•2•d RM = 1961.228ft•Ib Resisting moment RM = 3.027 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design (Long Direction) There will be a minimum of 2 anchors to resist the overturning forces. d1 := 26.18in spacing between anchor bolts Number of Anchors per Unit N .= 2 F = 318.525 lb OTM = 647.933•1b•ft RM = 1961.228ft.lb RM = 1961.228ft•lb Uplift := (OTM�- (RM) Uplift = —601,969 lb 1 T Uplift T -300.984lb AV1 N Tension Force AV1 = Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW �� II Overturning Forces- Narrow Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(2 • )) OTM = 647.933ft•Ib RM := (o.9—o.2•Sds)•wp•2.1 RM = 1s14.28sft•Ib Resisting moment RM = 2.337 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design Narrow Direction) There will be a minimum of 2 anchors to resist the overturning forces. 11 := 14.ssin spacing between anchor bolts Number of Anchors per Unit N := 2 Fp = 318.525lb OTM = 647.933.Ib.ft RM = 1514.28s ft•Ib RM = 1514.285 ft•Ib Uplift := (OTM) — (RM) Uplift = —713.047 lb 1 T Uplift TAV2 —3s6.s231b AV2 N Tension Force AV2 Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW rl Sliding Forces: To resist the seismic sliding forces there will (4) anchors used to resist the siding forces. F = 318.525 lb Seismic Load for Unit n '- 4 Number of Anchors Fp VAV1 := n VAV1 = 79.631 lb See anchorage design below: Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW fj ITEM #4 AHD Anchorage: Seismic Overturning/Sliding Forces on the AHD Unit There will be a (N)AHD at the interior building with an approximate weight of 2100 lbs + 100 lbs for cash loading per the manufacturer—2200 lbs. The units are an interior component and will not be experience any wind loading. Determine the seismic anchorage for the AHD. Seismic Forces for the unit attachment will be perASCE 7-16 Eq. 13.3-1. Seismic Loading Site Class D Sds = 0.685 Spectral Response Acceleration, Short Period Ip := i.o Importance Factor ap := t.0 Storage Cabinet per Table 13.5-1 RP .= 2.5 Storage Cabinet per Table 13.5-1 • z := o.ft Height of Attachment H = 14ft Estimated Height of Floor Component Weights Wp := 22oolb approximate weight per specs Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW .:r f 0.4•ap•Sds.lp•Wp I z Fp 1 := R • I + 2• ASCE 7-16 EQ. 13.3-1 Fp 1 = 241 lb Fp.max 1.6•Sds•Ip•Wp Fp.max = 2411.2 lb Fp.min 0.3•Sds•Ip•Wp Fp.min = 452.1lb governs Fp := Fp.min F = 452.1 Ib Project required seismic load Unit Dimensions h := 65.in Unit Height d := 42in Unit Width I := 32.5•in Unit Length Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 2a Overturning Forces-Long Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(2h l• OTM = 1224.438ft•Ib RM := (o.9- 0.2.Sds)•Wp•2•d RM = 2937.55ft•Ib Resisting moment RM = 2.399 >1.0 OTM Anchors are required to resist overturning Overturning Analysis -Anchor Design (Long Direction) There will be a minimum of 2 anchors to resist the overturning forces. d1 := 39in spacing between overturning points N := 2 Number of Anchors per Unit F = 452.1 Ib OTM = 1224.438.lb•ft RM = 2937.55ft•lb RM = 2937.55ft•lb Uplift :_ (OTM) - (RM) Uplift = —527.112 lb di T Uplift T = -263.556lb AH1 Tension Force AH1 Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Overturning Forces-Narrow Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•r2•hl OTM = 1224.438ft•lb RM := (o.9— o.2•Sds)•Wp•2.I RM = 2273.104 ft•lb Resisting moment RM = 1 856 >1.0 OTM Anchors are required to resist overturning Overturning Analysis -Anchor Design Narrow Direction) There will be a minimum of 2 anchors to resist the overturning forces. 11 := 24.5in N := 2 Number of Anchors per Unit F = 452.1 lb OTM = 1224.438•Ib•ft RM = 2273.104ft•lb RM = 2273.104 ft•lb Uplift := (OTM) — (RM) Uplift = —513.633 lb 1 TAH2 TAH2256.s16lb AH2 Tension Force = — Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CWII--II Sliding Forces: To resist the seismic sliding forces there will be (2) anchors used to resist the siding forces. = 452.t Ib Seismic Load for Unit FP n := 2 Number of Anchors F p VAH1 n VAH1 = 226.05 lb See anchorage design below: Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366,xmcd Engineer: CW J ITEM #5 Exterior/Through Wall ATM Anchorage: Seismic Overturning/Sliding Forces on the ATM Unit There will be a ATM at the interior at the exterior wall of the building building with an approximate weight of 2000 lbs + 100 lbs for cash loading per the manufacturer. The units are an interior component and will not be experience any wind loading. Determine the seismic anchorage for the ATM. Seismic Forces for the unit attachment will be perASCE 7-16 Eq. 13.3-1. Seismic Loading Site Class D Sds = 0.685 Spectral Response Acceleration, Short Period Ip :• = t.o Importance Factor ap := t.o Storage Cabinet per Table 13.5-1 Rp := 2.s Storage Cabinet per Table 13.5-1 z := o•ft Height of Attachment H = t4ft Estimated Height of Roof Component Weights Wp :• = 2000•Ib + toolb approximate weight per specs Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW J �) 0.4.a •Sds•I •W p p p 1 +2•z ASCE 7-16 EQ. 13.3-1 Rp , H) Fp 1 = 230 lb Fp.max .= 1.6•Sds•ip•Wp Fp.max = 2301.61b Fp.min := 0,3•Sds•Ip•Wp Fp min = 431,55 lb governs Fp := Fp,min Fp = 431.55 lb Project required seismic load Unit Dimensions h := 57.09.in Unit Height d := 32.52in Unit Width I := 30.31.in Unit Length Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW C�`•J Overturning Forces-Lonq Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1//2 h. OTM := Fp•I Z•hl OTM = to26.ssft•lb RM :_ (o.9— o.2•Sds)•1/1/p•2•d RM = 2171.117ft•Ib Resisting moment RM = 2.115 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design (Lonq Direction) There will be a minimum of 1 anchors to resist the overturning forces. di := t9.69in spacing between anchor bolts N := 2 Number of Anchors per Unit F = 431.55 lb OTM = 1o26.5s•Ib•ft RM = 2171.117ft•Ib RM = 2171.117ft•lb Uplift := (OTM�— (RM) Uplift = —697.552 lb 1 T Uplift TEA1 EA1 �= Tension Force EA1 —348.776 lb Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 2,4, Overturning Forces-Narrow Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(!•h I OTM = 1o26.55ft•Ib RM := (o.9—o.2•Sds)•Wp•2.1 RM = 2023.571 ft•lb Resisting moment RM = 1.971 >1 .0 OTM Anchors not required to resist overturning Overturning Analysis -Anchor Design Narrow Direction) There will be a minimum of 2 anchors to resist the overturning forces. 11 := 6.69in N := 2 Number of Anchors per Unit F = 431s5lb OTM = io26.55 lb•ft RM = 2o23.57ift•Ib RM = 2023.571ft•Ib Uplift := (OTM) — (RM) Uplift = —1788.38 lb 1 Uplift TEA2 N Tension Force TEA2 = —89a.191b Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Sliding Forces: To resist the seismic sliding forces there will (2) anchors used to resist the siding forces. FP = 431.55 lb Seismic Load for Unit n := 2 Number of Anchors F VEA1 n VEA1 = 215.775 lb See anchorage design below: Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW All anchors used for the new safe storage will use 3/8" dia x 1 7/8" effective embedment Simpson Strong bolt 2. Analyze the worst case anchor bolt for tension and shear using the Simpson Strong-Tie Anchor Designer Software. f2 := 2.5 overstrength factor Tapplied := max(TEA1 ,TEA2 ,TAH1 ,TAH2 ,TAV1 'TAV2'TCR1 ,TCR2 ,o) Vapplied := max(VEA1 ,VAH1 ,VAV1 ,VCR1 ,o) Applied loads: Tapplied = olb Vapplied = 226.05 Ib Steel strength governs over concrete in shear- so no overstrength req'd See attached Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW SIMPSON p,)lchor DesignerTM company: Date 3/17(2020 SIMPSON 1n+ Company. ate: 311772020 Engine,. Page: 115 Anchor Designer 5 ip. Software Project Chace Software Engineer Page: vs �' w Version 2.ST0943 Andreas: S TIB Version 2.8.70942 Project: Chase e Atld tree: Phone: Phone: E-redil E-mail: 1prelett l.to martin Customer company: Pi ct desalpfon:ATM anchorage Load and Geometry Customer contact name: Location: Load tamer souse:ACl 318 Sateen 5.3 Customer e-mail: Fastening description: Load come0wtion:not set Comment Seismic desigm Yes Anchors subjected to sustained tension:Not apleable Z Input Data L Anchor ParametersDuctilesection for tubes:1723A3(�Is saelalletl Dudilty section for shear.172.353(t)is satisfied General Base allabMl Design melhod-ACI 318-14 Concrete Normal-weight Go factorm abt ear bad at front row No et Units:Imperial units Concrete thickness.h gnarl):4.00 Anchors au g resisting wind antler seismic loads No Anchor h r Stet:Cracked Anchor type:Tonkel o: nrye oMrdkd wanton anchor Compressive warmth.P.(page 2500 Strength level loads: .0 Material:Carbon Steel Reinforcement condition:B tension.B shear Ne(&):0 Diameter(Inch):0375 SuppLnn.Aal reinforcement Not applicable Yu.at 226 Nominal Embedntam depth(inch):2250 Reinforcement prodded at corners:No Vie @hF 0 Effective Embedment depth.h.(Inch):1.575 ignore cona0t breakage In tension:No Coda report ICC-ES ESR-3037 ignore condole breakout In shear No <Figure 1> Anchor category:l Ignore Edo regi*ement Not applicable I Anchor duddiy:Yes Build-up grout pad:Na Z hue Snob):3.72 0..0nch):931 C..(Inch):6.00 S,.,(inch):3.00 she Recommended Anchor MMor Name:Strong-Bogs 2-3fre CS Strong-Bob2,hnom225"(57mm) Code Report ICC-ES FS12.3037 isimimimmatimlione �em "Y ma C)I bI Input dna am rats must be Rwdred tor agreement with me*ins chu spnom.the mamma and warens must bedecked tor ppmbt0. 8m0 leap and results mete clechn0 for apapratwe me cases 6mmwancaa,Mc sanaaros and guide0me met ea checked for plausibility. Simpson Suonp•Tie Company Inc. 5956 W.Las Foease Sadevard Piadlamon,CA 94583 Phone:925550.9000 Fax 525.e4T3art mewsnon96e.mm Smpson 6bonp.71e Company at 5956 W.W Posts.BMUMem Plementon.CA 99506 norm 925360.0000 Fat 9253473071 arwebmgtlemn w SIMPSON Anchor Designer,'" Company: q 5l67 ° SIMPSON Anchor DesignerTM Comwrtl- Date! 3(17/2020 Strong Software Project Chase eEngineer Page: 4r5 g Versin28.7094.3 Strong Tie Software Reject Chase e Address: Verabn 28.7094.3 Address: Phone: • rng Ehail: PM Ema6: 4lgure 2> Anchor Tension load, Shear Wed x. Shear lad y. Shear load combined, N.Ole) Vv.(W) V..(lb) J(V.uY"'{Vw?lee) 1 0.0 226.0 0.0 228.0 Sum 0.0 226.0 0.0 225.0 Ck1eumun commie compression stroll(L):0.00 03 Maximum concrete compression stress(psi):0 Resultant tension force(Ib):0 Resultant compression face(lo):0 Eccentricity of mutant tension forms In x-ads,e5A(Inch):0.00 Ecmnbk4ty of result:nttaWon faces N y-as5.ale(NMI;0.00 Eccentricity of resultant shear tacos N I-ds,gib(Inch):050 Eronnlrldty of reaulbnt Shear forms It P84410.Cinch):0.00 0 O i S.Steel Strength of Anchor In Shear(Sec.17S.11 V.(W) im e 0 14...0V..OW 8.00 8.00 1000 1.0 0.66 1110 9.Concrete Breakout Strength of Anchor in Shear 1S0c.17.5,21 Sher perpendleular to edge In c.NrectIon: Va=minr(1.1d.)0 ld.i.Jfc..s 9Aci s..'51(Eq.17,522a&Eq.17522b) h CO) a(In) . r.lost/ rat On) V.Obi 1.88 0.375 1.00 2500 533 3542 0V®•0(A./Avr)W.cy7evy3 Wt.(San 173.1 S Eq.1752.1a) A.an') An.(11E) 5...0, w,, 11,v V.N) 0 iVm(b) 64.00 128.00 1.000 1.000 1.414 3642 0.70 11503 Shear parallel to edge he wdf ecdon: V.,•min('I(I./da°$dd..i.drs rtd:B2.Jfs.r"I(Eq.17522e S Eq.17.5220) I.(in) 0.(In) A. P.(wq tau(kr) Ve(IS) 1.88 0375 1.00 2500 533 9692 OV.. 4 /A.)W..vr r Bit Wiry(Sec.173.1,1752.1(c)&Eq.1752.1a) Aw(Ina) Ao.Orra) Si..., , Wn, Vo,(W) i 'iv-(W) 64.00 128.00 1.000 1.000 1414 3642 0.70 3606 1g.Concrete Prvout Strength of Anchor in Sheer Meg.17.5.31 ism•Ok.N..yk.(An./Anm)Woes Woe W.p4Ne(Sec.173.1 8 Eq.1753.1a) Smut data and results must tta checked forngre.nent with Vre Besting dmune:sms,the standards and guidelines used be checked for plusiddq. Owl We and mulls must it checked for agreement with the skating dmmmmranm".Vie standards and guN55nes and be checked lee pdce®y. Simpson Simile-ea Company Inc. 5958 W.Las Peelle,Boulevard Pleseanton,CA 94588 Phone:925580.9800 Far 925.597.3e71 wmrahungle.can Simpson Sa q- mTn Cem peny inc.brc. 5958 .Las Posies Boulevard Pleasammo,CA 94588 Phone:92e.580.8000 F.,025.847W r 1 vwat sp entrasm r '' V' • SIMPSON Anchor Designer*"+ Company: Date: 3/17/202D Software Engineer Page: 5/5Strong=Tie Ven on z9.70943 Project Chase • Acmes Phone: Emait km Are(btI A,w„Ore) p..an Sule 4w Na l0) P 4Vm to) 1.0 31.84 31.64 1.000 1.000 1.000 2182 0.70 1528 11 Results 11 Imeraegetl of Tensile and Shear Forces(See.0 717 Shear Factored toad,V,.(lb) Design Strength eV.(h) Ratio Status Steel 726 1170 0.19 Pass(Governs) T Concrete breakout or+ 226 1803 0.13 Pass II Concrete breakouty- 226 3606 0.08 Pass Pryout 226 1528 0.15 Pass 3n"0 CS Strong-Bolt 2,hnom:2.25'(57mm)meets the selected design criteria. ly Warninos -Per designer input.ductility requirements for tension have been determined to be satisfied-designer to verify, -Per designer Input ductility requirements for sneer nave been determined to be satisfied-designer to verify. -Designer must eaerdse own judgement to determine Gels design Is suitable. -Refer to manufacturer's product aerahne for hole cleaning and installation Instructions. Inlanders and resuts must be chocked for agreement with the existing cliturestanees,ap*ndards end guidelines oust be doted forplous09lty. Stepson Stang-Tu Company Inc 5950 W.its Posies Boulevard Plemanten,CA 94500 ebony:925.5809000 Fat 925.e47,3871 mnrerrengoe.com ITEM #6 SAFE ANCHORAGE: Seismic Overturning/Sliding Forces on the Safe Unit There will be a (N) Safe at the interior building with an approximate weight of 3545 lbs + 500 lbs for cash loading per the manufacturer. The units are an interior component and will not be experience any wind loading. Determine the seismic anchorage for the safe. Seismic Forces for the unit attachment will be per ASCE 7-16 Eq. 13.3-1. Seismic Loading Site Class D Sds = 0.685 Spectral Response Acceleration, Short Period Ip := 1.0 Importance Factor ap := 1.o Storage Cabinet per Table 13.5-1 RP := z.s Storage Cabinet per Table 13.5-1 z := o•ft Height of Attachment H = 14ft Estimated Height of Roof Component Weights W := 3545•lb+ soolb approximate weight per specs p Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW o.4•ap•Sds•Ip•Wp /Fp 1 := R • 1 + 2. z H) ASCE 7-16 EQ. 13.3-1 Fp 1 = 443 lb Fp.max := 1.6•Sds•Ip•Wp Fp.max = 4433.321b Fp.min 0.3•Sds•Ip•Wp Fp.min = 831,248lb governs Fp := Fp.min F = 831.248 lb Project required seismic load Unit Dimensions h := 72•1n Unit Height d := 38in Unit Width I := 26•in Unit Length Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 3c) Overturning Forces- Long Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1/2 h. l OTM := Fp a h) OTM = 2493.742ft•lb RM := (o.9- 0.2.Sds)•Wp•2•d RM = 4886.697ft•Ib Resisting moment RM = 1.96 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design (Long Direction) There will be a minimum of 2 anchors to resist the overturning forces. d 38in spacing between anchor bolts N :_ 2 Number of Anchors per Unit F = 831.248 lb OTM = 2493.742•Ib•ft RM = 4886.697 ft•lb RM = 4886.697ft•lb (OTM) — (RM) Uplift := Uplift = —755.67 lb d 1 Uplift Ti77.835Ib Ti := N Tension Force 1 = • Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Overturning Forces-Narrow Direction: Load Combination: 0.9D+1.0E Seismic force are assumed to conservatively act at the center of mass of the unit which is taken as 1/2 h. OTM := Fp•(-•h) OTM = 2493.742ft•lb RM := (o.9— o.2•Sds)•Wp•2.1 RM = 3343.53 ft Ib Resisting moment RM = 1.341 >1.0 OTM Anchors are not required to resist overturning Overturning Analysis -Anchor Design Narrow Direction) There will be a minimum of 2 anchors to resist the overturning forces. 11 := 22in N := 2 Number of Anchors per Unit F = 831.248 lb OTM = 2493.742•Ib•ft RM = 3343.53ft•lb RM = 3343.53ft•lb Uplift := (OTM) — (RM) Uplift = —463,52lb 1 Uplift T2 := T2 Tension Force = 231.�6lb Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 2%t , Sliding Forces: To resist the seismic sliding forces there will (4) anchors used to resist the siding forces. F = 831.248lb Seismic Load for Unit n := 4 Number of Anchors F V1 V1 = 207.812 lb n Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW All anchors used for the new safe storage will use 3/8" dia x 1 7/8" effective embedment Simpson Strong bolt 2. Analyze the worst case anchor bolt for tension and shear using the Simpson Strong-Tie Anchor Designer Software. ft := 2.5 overstrength factor Tapplied max(T1 ,T2 ,0) Vapplied max(V1 ,o) Applied loads: Tapplied = o lb Vapplied = 207.812 lb Steel strength governs over concrete in shear-so no overstrength req'd See attached Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366,xmcd Engineer: CW o • a $gp o a IfA T H VV I 11 m 16. 'LIMA 11 N __.__ 6 P 5 p i _t •m M Z9 - $� o 'er .5 s§, o m a $ ` tt 8 '~ E z d . I@e> '44 a 3 4 R V srrill.l!e ' i 3 om �1 it 9 �a$ fiBB� B aaag8 @A A Pr E N. ti o o ri g$ fi $ § miezfa R i .SS o fi li ts - m"-sy Eso g h 1 _gig sg . .-oz I € 1b� eH 5gx t Eg ty` 1� hhIiIi $d+3� tall H $¢i E m C e. 2tn ° o % M 8 m-K- 0 li . 1 i•E g 1H zs } $ a aoa � ow- 1 zr o X +12 s � N 8E v o A no 1N al II t 0 ee v U w`S'¢aw " rovl u�', m `� .a a � 'a 9.. . ' Boo 0000 4 - .5 gEE ci 8 N N1.1 g g in> N E 55'a.. a w n s58� s a d ¢ EEC �V y} .. ow . 7 .0 = rXv $ q h I`"Y� 'a y;or w` no �41 11.31 Y - .. g q 4 :11N ^ - Z° g .N . gg.5.6 — s EA il od ••ER v •g .g ' 4. • 3, >14 U O'� -/ o o �tell!ifl � ii ?� y 3 Q s .Cn -a ti^N o t, 8C-c Q i i a.0 ESIt Dliii!! aa Og �I! t Q N ?` vQ 'D a N o g 1 le ;lit 1E o a E 8 n 1.LL s F1 I 0 0 • ' . 1 U W 2 a W .. os E g yyF 9 E 11 e, c, 5 02m 82 `p IQ N c O E Ai a Eg 0 i12 a.a. ' A l" k i17 SIMPSON Anchor DesignerTM conwanr ate: 13/17/2020 Engineer. Page:J 5/5 StrongTie S�°ron reaga.3 Project Chase Phone Gmait km Am(IJ) Arm(In') wax rue wa„ Al.(lb) 0 V.0,/k,(m) 1.0 31.64 31.64 1.000 1,000 1.000 2182 0.70 1528 11.Results 11 hderacllon of Tanana and Shear Foists Men D 70? Shear Factored Load.V-(Et Design Strength,eV.(Ib) Ratio Status Steel 208 1170 0.18 Pass(Governs) T Concrete breakout en. 208 1803 0.12 Pass ((Concrete breakout y- 208 3606 0.06 Pass Pryout 208 1528 0.14 Pass 318 0 CS Strong-dolt 2.hnonn225"(57mm)meets the selected design crferix. 12.Waminos -Per designer input ductrty re uirements for tension have been determined to he satisfied-designer to verity. -Per designer input-duc101 requirements 1m shear have been determined to be satisfied-designer to verify. -Designer must exerdse own judgement to determine Pm design Is susabi.. -Refer to manufacturer's product eterahee for hole Meaning and Inafu0atIon Instructions. in0utdda and results must ea clutched faceememanlwl n me caning dmmmmnm..Me alandwda and guaegrma man to dunked he plau¢hmy. Simpson Shvng-t Company Inc. 0050 W.to Poba.9m4eyana pfeimon.CA 9ytt Phone 923.1809000 Fax 925.8473871 mrwsbongse.ram ITEM 7: (N) OPENING IN (E) CMU WALL There will be two —2'wide openings in the existing cmu wall for a total net opening width of 6'. There will be a new frame above and below the openings. Design the openings for the applied gravity and out-of-plane loading. Gravity Loads: Upper frame: L := 6 ft overall length of opening Hcol := 14.5ft Height of column Hwall := 17•ft Hwall.opng = 5•ft Wwall (Hwall — Hwall.opng)'DI-wall.cmu W loog lb Wwall = ft Roof loading wtributary := 9'ft Tributary width to Beam wDL DLroof'wtributary WDL = 343•plf wLL := LI-roofwtributary wLL = 490•plf Low frame t_a'� 3': lb WDL.2 DLwall.cmu'2ft = 168 ft Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Size additional steel frame for out-of-plane loads: Frame Wind Force: Exposure B V := 97 KZt := 1.0 KZ := 0.60 Kd := 0.85 qh := 0.00256•Kz•Kzt'Kd.V2.psf qh = 12.284 lb— ft2 p = gh[(GCp)-(GCpi)] EQ 30.4-1 (Components and Cladding Low Rise Buildings) GCp 1 := o.8 External Pressure Coefficient(Positive Face) GCp 2 := —0.9 External Pressure Coefficient(Negative Face) GCp• := o.18 Internal Pressure Coefficient Windward Pressure 1 pww := gh•[GCp.1 - (-GCp•}] p = 12.039•psf Leeward Pressure plw := gh.[GCp.2- plw = —13.267.psf Iplwl = 13.267 Ib ft2 Ww•nd ( Iplwl Beam Design L = 6ft Hwall Htrib. 2 Htr•b. = 8.5ft Pw Wwind'Htrib. Wind Forces acting on frame Pw = 112.771 l ft Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW Check the frame for out-of-plane loading: Seismic Forces Sds = 0.685 := 1.0 Fp.1 := o.4•Sds•I Fp 1 = 0.274 Wall at new opening Hdeck 17.sft Height to deck Hwall = 17ft Hwall.opng = sft Hdeck — Hwall.opng Wwall wall.cmu' 2 Fp := Fp 1 'Wwall Seismic Forces acting on wall Fp = 143.85fb Out-of-Plane Loads: F = 143.s5 lb p ft Use: (N) HSS 6x3x1/4 upper beam, (N) HSS 3x3x1/4 low beam P — t t2.7n lb & (N) HSS 3x3x1/4 columns w ft See attached The foundation loads are largely unchanged, so set new frames on the (E)footings. Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 6 Y Z 110 0.N5 N6 dio N4 v r'1 N10 r,7 r.2 Envelope Only Solution Brad Young &Associates I SK- 1 CW 6'wide frame Mar 17, 2020 at 3:18 PM 19366 19366-6'wide opening.r3d r • I11RISA Company : Brad Y oung& Associates 3M2ar Designer CW JCompair Bred YOUn &Assorete5 Mar 17 220 JcbNumber : 19366 Cheke IIRISA Deslgner : CW g ChekM amcws�courw Model Name : 6'wide frame Cneckad By._ •ne.�a+rc'¢'scvawY Model Name 6 wiae frame Cneckad By (Global)Model Settings (Global)Model Settings.Continued Display Sections for Member Calls 5 Seismic Code Max Internal Sections for Member Calm -97 ASCE 7 16 Include Shear Deformation? Yes seismic Base.Elevation(1t} Not.-Enffired ;F.,.>a-,3, Increase Nailing CapaCily fbr Wind? ..:,Yes:i Add Base Weight? Yes Include Warping? Yes CtZ .035 BM 035r -- Trans Load acInteisecting Wood Wall?-Yes; Z Not Area Load Load Mesh(ln"2) 144 J T Z(secTX ) _ -... ._. Not Entered __ Merge Tolerance Cm)a .12 Not Entered P-Delta Analysis Tolerance '0.50°k RX 3.5 - InUUdeP-Deha forWalls? r Yes R Z 3.5 Automatically Iterate Stiffness for Walls? No - (It:Exp.X JS > Max It:mations for Wag Stiffness 3 Ct Exp.Z .75 GravityAcceleration(R/sec'2) 322 -..- S01" Wail Meth Size(in) 12 :r -_ _--_ SIDS 1 878 Eigensolution Convergence ToL-(LE) 4 -- 91 - -- Not E - --- - Vertical Axis y -- - TL(sec) Not Entered Global Member Orientation Plane XZ Risk- ✓- _ I or:{l : -"- _ - ; Other Dynamic Solver Solver IrASpa seraled Solver COe Accelerated rm Drift at 2.5 -.:... Hot Roiled Steel Code CA.Z --- _ 2 5 Adjust Rolled Steel AISC 15th(360-16):ASD - Cd X 4 . RISAConnection Code Y�es(I 149x(360.10):ASD Rho Z _ -- ..,4 - Cold;Formed Steel Code -. AISI.=S100 16_ASD Rho X _-_ _._ 225 Wood Code AWC NDS-18:ASD Wood Temperature 4-100E-.... _ Concrete Code ACI 318-14 Project Grid Lines Masonry Code TMS-402-16:ASD -- Aluminum Code AA ADM1-15:ASD-Building Label Snit Z rat Erjd ZD to Pont x mi Ern v re,,,;__ start Bubble told Bubble StaillessSteel Code AtSC-14th(360-10)::ASD No Adjust Stiffness? Yesflterative) _ Number of Shear Regions q - - - Protect Grid Arcs Region Spacing Increment(in) 4 - Rod Ira axon«-y rdy .Qp a,eia `�a B4bbfe E�.6uCble Biaxial Column Method Exact Integration No Data to Print Parne':Bele Factor(PCA) .65. Concrete Stress Block Rectangular Hot Rolled Steel Properties Use Cracked Sectors? Yes Use Cracked Sections Slab? No -- Lebel E Iksl G non N. me me eee Ri pad Framing Warnings? No 1 A36 Gr.36 29000 11154 _3_...,._._.Unused Force Warnings? Yes 2 'A572 Gr.50 29000 41115q 3 „< 49 1t 58 "12 Mini Bar Diem:Spacing? . No 3 A992 Concrete Reber Set 29000 11154 .3 65 .49 50 1.1 58 1.2 REBAR SET ASTMA615 4 "iA504 Grd2 29000 11154i8-"" ..65 _49 42 :-1:3 56* 1.1 Mtn.%-Steel-for:Co 1 15 A500 Gr.46 29000 11154 .3 .65 .49 46 12 58 1.1 Max%Steel for Column .8 Hot Rolled Steel Section Sets Label Snane Type De6IOn list Material ?eslon Pa.. A anal tvy Gnat la lin41 J un41 1 Column HSS_3X3X4 Column Tube A500 Gr.46 Typical 2.44 3.02 3.02 5.08 2 Beam Ci•':ZX207 :Beam :Channel A35�Gn.38 Typical 8.0$ 3.86 129 .369.t 3 Column im HSS3X3X4 Column Tube A500 Gr.46 Typical 2.44 3.02 3.02 5.08 4' .:beam low HS53X3X4 Beam Tube A500 Gr46 Tvpitel '2.4t :....3.02 - '3.02 5.08 RISA-3D Version 17.0.0 [Orawings\2019\193661DWG\CALCS\I9366-6'wide opening.r3dj Page 1 RISA-31)Version 17 0.0 [0:ldrawings12019119366\DWG ICALCS119366-6'wide opening.r3d] Page 2 Associates Mar 17,2020 Company : Brad 2020 III RISA olgoer er 9368 Young& 3 PM ey I I(RISA m N�r Young&Associates Mare M 8y� ,„ , w,,,,,, Model Name : 6'wide frame nnreenc,„.acp+m.ur Model Name G wide hams Joint Coordinates and Temperatures Label X MI y[rt] Z lni Temp IF) Detach From DW Member Point Loads 1 I N1 0 0 0 0 Member Label Direction Maanhudelk k-in LooelonFR%1 2 i N2 ':: i 6 0 -::0 0 :1I No Data to Print:.. I 3 N3 0 0 0 6 - 5 0 `0 5 N5 0 14.5 0 0 Member Distributed Loads BLC 1:DL) 6 N6 6 14.5 0 0 7 N7 3 0 G 0 Member Label Direction Start Maonitudeik/IL...End MaoniwdelkllLF. Start LocationPL%1 End LornihnrR%1 8 -.N8 3 5 0 0 _ 1 M3 Y -1.351 -1.351 0 0 9 N9 3 3 0 0 10 :. . N10 € I,. 6 3 [ 0 Member Distributed Loads(BLC 2:EL) Member Label Direction Start Maantudelk/IL...End Meanfude6NLF. Start Loc bona.%1 End Loeationla.%l Joint Boundary Conditions I 1 I M3 I Z .144 1 - .144 1 0 I 0 1 Joke Label K IkMI Y RNni Z Ik/Ini X Rotjkeltradi Y Rotik-rlradl Z Rot Ik-NraN Member Distributed Loads(BLC 3:WL) 1 N1 Reaction Reaction Reaction 3 •N2 Reaction Reaction Reaction ,.�a 3 N5 Reaction 1 M3 Z .113 .113 I n 0 0 4 N6 t: Reaction 5 N7 Reaction Reaction Reaction Member Distributed Loads(BLC 5:RLL) ber bet -•n ,ert a• kid.L.a... eel a•0au•.W..F...Start Location b.% nit nh•... Member Primary Data 1_ ®tea -.49 �Od Labe I Joint J Joint K Joint Rotale(de... Section/Shape Tyne Design Ust Material Reston ROL„ 1 M1 N1 N5 Column column Tube A500 Gr.46 Typical Member Area Loads 2 ---'M2 N2 N6 Column `--��n Tube A500 Gf46 Typical Joint A Joint 8 Joke Joint Direction Distribution Magnludelksfl 3 M3 N3 , N4 Beam Beam Channel A36 Gr 36 Typical ( No Data to Print... 4 'M4 -:N7 N8 ..Column mt ....:Column Tube . .A500.GC46 Typical'; 5 M5 N9 N10 beam low Beam Tube A500 Gr.46 Typical Plate Surface Loads Member Advanced Data Plate Label DkaciIol MaunitudefksfFl I aDSI__. I Reiea.+ i BM.' seJypl_.QtisMGnl TIC Only Physical Dell Rat Anahrsis. Inactive Seismic. I NO Data to Print'•' 1 M1 Yes "'NA" 'None 2 'M2 Yes ;+."`NA+' None Basic Load Cases 3 M3 Yes None 4 M4 Yes "'NA" None BLC Desert/don Category X Gravity Y Gravfy Z Gravpv Joint Point Distributed ArealLle..Surface(P.. 5 M5 Yea None 1 DL DL f -1 2 3 WL WI 1 Hot Rolled Steel Design Parameters 5 RLL RLL I 1 Label Shape Lempd.,. Lbwml LOPPel Lcomo toolni Loogm bot..L-tom.., Kw Ka Cb Function 1 M1 I Column 14.5 Lbw .8 .8 Lateral 2 's:M2 "Column 14.5, °Lbw Y =.6 ,6 Laterak Load Combinations 3 M3 Beam 6 Lbw .65 .65 Lpteral 4 -'-M4 :ColumniM _'(5 - `Lbw Later31.' Description So..PDeha S...BLC Fac..BLCFec.BLCFac..dLCl-ac.BLCFac BLC Fac..BLC Fec..BLCFaC.BLC Fac.BLC Fes,. 5 M5 beam low 3 Lbw Lateral 1 D+Lr Yen Y I DL 1 RLL 1 2 %D+0.6W Yes Y _1 3 0.60+0.6W Yes Y DL 6IWL 6 Joint Loads and Enforced Displacements 4 ID Yes Y DL- 1 Joint LabN UD.M Direction MaonilutlelIX.k-m fin radl.Rc's"211F k's"2'1111 5 De0.75Lrvp.45...Yes Y DL 1 WL .45 RLL.75 I LL .75 6 0+0.7E No Data to PriDir... - "'Yes Y DI_ 1 EL .7 I - 7 2+0.7511+0.75J es V DL 1 RLL.75 LL .75 8 +DaLL ':.Yes V DL. 1 LL 1l z 9 De0.75L+0.525EYes Y DL 1 LL .75 EL.525 i RISA-3D Version 17.0.0 [0:\drawings120191193661DWG\CALCS\19366-6'wide opening.r3dl Page 3 RISA3D Version 17.0.0 [O:\dravings\2019\193661DWG\CALCS\19366-6'wide opening.r3d1 Page 4 n Com IIIRISA Job NumGer eW 0unq EAsmda es 3 Checked By: IIIRISA JDobgner YoungEAssoca rs Checked ,,,,.„,,�„A- Model Name : 5 wide frame ,;,c„E„C,e„cy,,,,,. Model Name : 6'wide frame I Load Combinations(Continued) Envelope Joint Displacements(Continued) Description So..➢Delta S..BLC Fac..3LCFac..3LC Fac..3LC Fac..BLC Fec..BLC Fac..8.0 Fac.3LC Fac.3LC Fac..BLC Fa0.„ Joint X rot LC Y iinn LC Z 6n1 LC X Retailer. LC Y ROMIO._ LC Z Retailer. LC 1 ER only Y EL 1 I 14 ran P 1 D' t.9 _.P 1 "-- P :1 ,2983e•04 '6 f+:567e0s 1 1111 72 Wind 4f11V 'V ' WL 1 - 5 N3 max 0 10 -.001 10 421 6 3.535e-03 6 0 8 4.131e45 10 13 0 Y DL 1 I . 6 - min 1Xlt l --.003 '1 1 0 1 .0. 1 •t.eoee-a1 :6 -1.a12o-M 1. 7 N4 mac 0 10 -,001 101 .46 6 3.94e-03 6 5.871e-04 10 1.741e-04 1 9 N5 max .02 , 1 -.001 10 0 10 0 8 0 8 4.16e-05 10 Load Combination Design 10 min li'.0Og 3 --,,003' 1 :: o 1 'I-729s•at B'.` •1.9011e43 : 6 -1-a12e-n4 -1' -: Desralotion ASIF CD Service Hot Rol Fold Form. Wood Concrete Miasma, Aluminum Staples; Connection 11 N6 mac _-pOg 10 -.001 10 0 10 0 8 5.8710-04 10 1.752e-04 1 i D+U 1.6 Yes Yes Vas Yes Yes Yes Yes I Yes 12 mim:1-.021' 1 °;-.003 1 <0 1 ':4.o02e•o3'':6' 0 -11 7.G5e-05:. 3 Yes. Yes 13 M Max0 10 0 10 0 10 S407e•OS 6 0 2 DW.BW 1.6 Yes Yes ''Yes Yes I Yes -Yes 8 t8e-05 9 3 O.BD+O.BW LB Yes Yes Yes Yes Yes Yes Yes Yes 15 N8 Max 0 10 -.003 10 .471 6 16.9414-o3 6 0 8 5201e-07 1 4 0 ,9 .'.Yes ...:.Yes Yes =Yes Yes Yes Yes Yes ::: 16 mirL':-.001 1 -.006 1,.: -0 1 0. 1.. .S.M..3e-04 t 6 2766e-09 - 3 5 Yes Yes Yes Yes Yes Yes Yes Yes 6 : .7E Yes Yes -: -Yes Yes °Yes Yes .Yes Yes 17 N9 MIX 0 10 -.002 10 295 6 7.79e-03 6 0 B -t-957o-05 1 0.0 7 000.75Lr+0. Yes Yes Yes Yes Yes Yes Yes Yes 18 - - .mirt 0 : 1 -OQ4 1 ::: 0 1 .. D • '1 -7.076e44 B %:3.567e•05 2 19 N10 max 0 8 0 10 .317 6 7.55ee.03 6 0 8 9.544c05 1 8 Yes Yes Yes Yes Yes Yes Yes Yes 20 IRin 0 1 -,002 1 '-0 1 0 :l 963>'04 s:-6 `SA76e-05 3 10 =0.60+0,7E _ Yes -.Yes Yes Yes "'Yes =Yes - Ye's'. 'Yes- 11 E0 only Yes Yes Yes Yes Yes Yes Yes Yes Envelope Member Section Forces 12 Wind only - Yes -:`Yes Yes Yes " Yes ' Yea' Yes. Yes '. 13 D Yes Yes Yes Yes Yes Y Yes Me r ,Sec Axlatikl LC vsheadkl LC zshearakl LC omoe..LC,- mo-ri. LC.x-z.0smemlk6U__1L_. 14 t'__ _ Yes =Yes Yes Yes s: '. Yes 1 M1 1 't 2.87 1 -.005 10 0 8 0 10 0 10 0 10 2 . Miff 1289 3 •'-.012 1 -.202 "6 0,..1 `- 0 1 1 0 1 Spectra Scaling Factor 3 l 2 Pal 2.84 1 -.005 10 0 8 0 10 0 8 .044 1 'Scaling Factor 2: 1 Scaling Factor X: 1 1_- 5 3 max .06 9 0 1 .117 6 0 10 0 8 0 1 Dynamics Input 6 rah 036 - -.846 6 0 • 3 : -,: 7 4 max 03 1 9 0 ' .117 6 0 10 0 68 0 1 Number of Modes _0 '8- -:' trim ,P38 3 '' 0 .•- 3 - 0 1 : 0 1 -.423 6 0 3 Load eombinStion Number �.1-D+Lr 9 5 max 0 10 0 1 .117 6 0 10 0 10 0 10 Acceleration of Gravity 322 (ftlsec^2) 10 rah 0 1:': 0 3 0 :.:1 0 1 0 1 0 1 Convergence'.Tolerance _0.0001 11 M2 1 Max 3.134 1 .015 1 0 8 0 10 0 10 0 10 12 m1n'1.447 3 >::.009 3 2 6'.'-'0 1 0 1:` 0 1 13 2 mat .832 1 .098 1 0 8 0 8 0 8 .023 9 Envelope Joint Reactions - 14 , min 1267 3 =.051 3:--257 6- -.173 6 -.783 , 6 .014 3 Joint rid LC Y NI LC Z aid LC MX Ik-ftE LC MY Orel LC MZ Q-IQ LC 15 3 max .06 9 0 1 p .129 6 0 10 0 8 0 _,. 10 1 N1 max, .012 1 2.87 1 0 8 0 10 0 10 0 10 117 •� 9 0 1= 0 1,.... 0 1 +'-. 6' 0 1 7 4 max .03 9 0 10 .129 6 0 0 10 6 0 10 3 N2 max -.009 10 3.134 1 0 8 0 10 0 10 0 10 19 5 max 0 10 0 10 129 6 0 10 0 10 0 10 5 N5 max 0 10 0 10 0 8 0 10 0 10 0 10 21 1 M3 1 Max .012 1 2,75 1_ 0 8 Q 8 0 10 .06 1 22:>.. --man .005.3 1216 3. -.295 6:'-.098 6 - - 0' 1 .026- -' 3 7 N6 max 0 10 0 10 0 8 0 10 0 10 0 10 23 2 m 012 1 -.018 10 0 8 0 8 0 8 -872 10 --.3_ 271 9 147 max .006 8 5.977 1 0 8 8 0 10' 0 10 0 10 1 2 00 1 25 3 m .099 1 .B43 1 064 6 0 8 Q 8 27 1 11 Totals: max 0 10 11.981 1 0 6 _.__. 27 4 max .099 1 .0,051 1 215 6 .086 6 0 8 -,837 10 29 5 max .099 1 -1213 10 .366 6 .086 6 .173 6 .117 1 Envelope Joint Displacements 31 ..::.M4 1 m1a'x 5,977 1 -.07033 =1 0 8 0 1 _ 0 110 0 10 Joint X tlm LC Y Ora LC Z DP LC X Retail0 , t G Y Romtio. I C 7.Retail° J c 1 I N1 'max 0 10 0 10 0 10 87280-03 6 0 8 1256e-04 1 33 2 max 5.966 1 -.003 1 0 8 i 0 10 0 1 8 .007 9 2 -=min 0 1 0 1 :::0 1 r. -p :1- •1.908e-03 ¢ +.5.49e-os 3 34 1 in 2.683 3 . .->:006 2 -.074 :6=. 0 '1 '::-.092 16 004 1 3 N2 max 0 10 0 101 0 10 9.405afi3 6 0 8 •2.686c05 10 35 13 5.956 1 -.003 -1 0 8 0 110 0 18 .015 I 9 RISA3D Version 17.0.0 [0:\drawings\2019\19366\DWG\CALCS\19366.6'wide opening.i3d1 Page 5 RISA-30 Version 17.0.0 [O:Wrawings\20191793661DWG\CALOS\19366-6'wide opening.r3d] Page6 ill 0 ', Company . Brad Young S Asaoelates Mar17.2020 Company : Brad Young&Associates Mar 17.2020 IRISA u 3269M IIIRISA Igner CW 325 PM Job Number 19366 Checked By. Job Number : %6 ,,.e,� WOaNO' Model Name 6'wide frame Checked 9y , ., � Model Name 6'wide frame Envelope Member Section Forces(Continued) Member Set Axlellkl LC v Sheared Lc x sheagkl LC Torque LC y-y Momenli. LC ax Momentlk-n LC Envelope Member Section Stresses 36 I { intrr 2677 3'- -.006 2 '-074 6 0 I i -.184 1: 6 .003 1 Member See Alda6ksf LC y$hem':, LC 'I Toonan jl l C 37 4 max 5,689 1 046 10 .007 6 0 8 0 8 -.017 10 1 M7 1 max 1.176 11 -.005 10 0 8 0 10 0 10 0 10 0 10 38 I -.min 2516 3 087 1 r:. 0 1 -.04 I -.193 1 6 -.028 4 2 min -.528 {3 -.011 1 -189 6 -0 1 0 1 0 1 0 1' 39 5 max 5.678 1 046 10 .007 6 0 8 0 8 .082 1 3 2 max 1.164 1 005 10 0 8 6 40 mIr2509 3' -.087 1 -': 0 1 "-04 I-6 -.184 I 6 041, 3 4 min '.521 13 -.115.2610 11.2 1 0 8 4.068 1 41 M5 1 mex-.043 10 259 9 0 8 .023 10 04 ' 6 103 9 ___ 3 max .925 9 ,p L. 1 -.189 6 -26 1 :115 3 4366 6 1'. 42 `.I. min:_,083 1 t.155 3 =:.:-071 6 -i. 0 I 1 ' 0 : 1 .062 3 6 ,6 ,... min ' 3 .19 ,.1. 0 10 0 3 5.044 ,6: 5044 1 43 2 max-.043 10 .127 9 0 8 .023 10 0 8 -.025 10 7 4 max .012 9 0 1 .109 0 ,10 0 1 0 8 2.022 6 8 :Mitt'•"i407 .'3 :'D-a 3. 1 0 ' 1 0 :'1 0 3 -2522 6 0 .1-': 45 3 max-.043 10 -.003 10 0 8 .023 10 0 8 -.082 10 9 _5 max"° 0 10 0 1 .109 6 0 10 0 10 0 10 0 10 47 4 mar_.043 101 -.083 10 0 8 023 I 10 0 8 -.02 10 11 M2 1 max 1284 1 .014 1 0 8 0 10 0 10 0 10' 0 10 48 I I :`.min -,083 1. -.14 ':<1 _,071 6 0 7 12 6 :033 2 12 min .593% 3'. .092. 13 -.0 - 6 O ,-7 0 1 0 1 0 1: 5500 15 min -.0438 10 272 10 0 8 .023 10 0 8 .125 1 13 2 max 1.161 1 .092 1 0 B -083 10 .138 9 0 8 4.668 6 { min -,083 1- -272 -. 1 -.071 6`�' 0 11 -,173 "6 ,072 3 - 15 3 max .025 9 0 10 .12 6 0 1 0 10 0 8 5.564 6 16 min 01 - 3 0.%r. 1 •D a` 1 0 3 0 ;1 _5564 ---8' 0 1--: Envelope Maximum Member Section Forces 17 4 max .012 9 0 10 .12 6 0 1 0 10, 0 9 2.782 8 Member Aaeltkigcfrtl Lc snea „{ y♦LS 7,a5h�a_, �efl6 LC Z-Z Mome...LOHm LC 18 min -:007 - 3 "71'£ 1 4 ✓. t. 0 ::3 0 1 -2782 6' 0 :1: 1 M1 m..2,87 0 1 0 5.135 1 .117 '.135 6 0 0 10 0 0 10 06 4.964 1 19 5 max 0 10 0 10 .12 6 0 10 0 10 0 10 0 10 20 min "0;. 1 •%•0' 1 0 1 0 '1 0 '11 0 ' 1... 0 ..1 2 mh 0 ':14.5 1 -012 0 1 -202 D 6 0 0 -"1 -1.093 :5935 6 D 0 Ti 21 M3 1 max .002 1 .813 1 0 8 015 10 033 1 0 10 0 10 3 1..42 m..3,134 0 1 .098 3.021 1 129 135 6 i 0 0 10 0 0 10 .077 3321 1 4 min 0 '145 1 0-::: 5.185t 1 -.257 8:`-173 3.021 6 -1206::5.135 6 -:116 4.984 1:' 5 M3 i11.. .099 3 1 2.843 3 1 .366 8 6, .086 3.063 6 173 1 6 6 .27 3 1 23 2 max .002 1 -.005 10' 0 B 1 1 1 -.487 10 0 8 714 8 6 , mm.005 0 3;-2,742 6 1 -296 0 6:1 -098 0- 6 -,471 3 6 -1.971 15.1 7 M4 m..5,977 0 1 -.003 0 1 .007 021 6 0 0 10 p 0 10 ,082 g 1 25 3 max .016 i 1 .84 1 .022 6 -.068 10 .151 1 0 8 1.023 6 8 <-.087 38121 1 :... 74 -.04 .'0' 6 I 3A21:6 -218 -2989 6 --:09 3.021 7::. 26 min .008 3 .37..1'. 3 0 7 -.15] '.-'i .068-' 3 -32B4':. 8 •0 1:. min2.543 5 31 .015 1 .073 6 1.061 1 -.467 10 0 8 .57 6 9 MS (11..-. 0 0 9 0 0 8 1 023 10 125 3 1 27 4 max .016 1 10 -:15r-083 0 1 -:-272 3 1 .=.071 0::6 D 0 1 -.173 '3 6 -067 1i459Y2 29 5 mac .016 1 .358 0 ,124 6 -.032 0 -10681'.7 1.205 6 0 6. Envelope Member End Reactions 31 M4 1 max 2.45 1 .083 1 0 8 0 10 0 10 0 10 0 10 33. min 1. 45 -.003 2 -.069 6' 0 1 r 9 0 1 0 Member Me_ Axhgkl LC vSheamd LC zShwrlkl LC Toruueik-..LC vw Mom... LC z-:Monte... LC 33 2 mar 2.4 1 45 1 .003 1 0 8 -025 1 t- 6 9 0 8 .g48 6 1 M1 I max 287 1 -.005 10 0 8 0 10 0 10 0 10 34 i min 1.1 3 :005:, 2 -069 6 -.043 2 .025 1 -,548 6 0 1: 2 1nm 1289':. 3 -.012: 1 202 6 1 0 1 s0 ' 1 -9 1 35 3 max 2441 1 -.003 1 0 8 -.05 1 r:, 9 0 8 1.096 6 3 J max 0 10 0 1 .117 6 0 10 0 10 0 10 36 min 1,097 3 -.005'. 2 -.069 6 -.066 2 r 1 -1.096 9: •0 1. 37 4 max 2.331 1 -.043 10 .006 6 .167 8 -.1 10 0 8 1.15 6 5 M2 1 max 3.134 1 .015 1 0 8 0 10 0 10 0 10 38 min '1:031 .3 -:081:' 1 0 1 .1 :3 -.167-.•4 -1.15 6: 0 >1 39 5 max 2327 1 -.043 10 .006 6 -.244 10 .49 1 0 8 1.098 6 7 J max 0 10 0 10 .129 6 0 10 0 10 0 10 41 M5 1 max -.017 10 241 9 0 8 -.369 10 .615 9 .24 6 0 8 M3 I max .012 1 2.75 1 0 8 0 8 0 10 06 1 42 10 -min .005 3 t216 3 :-295 6 `-:D98 >:6 0 1 E026 3-! -43 2 max -.017 10 .118 9 0 8 246 8 -.148 1Q 0 8 .078 6 11 J max .099 1 -1.213 10 .366 6 .088 6 .173 6 ,117 i 12 min .051 3---2.742' 1 s0 1 0. 1 -0 .1 057 3 45 3 max -.017 10 -.003 10 0 8 516 9 -.31 10 0 8 .396 ,6 13 M4 I Max 5,977 1 -.003 1 0 8 0 10 0 10 0 10 14 min 2689 3 -:006 2 -.074 6 `:.0: 1 0 1 :0 t 47 4 max -.017 10 -.077 10 0 8 .195 9 -.117 10 0 8 .713 6 15 J max 5.678 1 -.046 10 .007 6 0 8 0 8 .082 1 48 , 49 5 max'__017 10 -.151 10 0 8 -.431 10 .745 1 0 8 1.031 6 17 M5 I max .043 10 .259 9 0 8 ,023 10 .04 6 .103_ 9 18 <:min -,083 1 .155 3 -071:. 6 () 1 -0 1 =062 3 19 J max -.043 10 -.162 10 0 8 .023 10 0 8 .125 1 RISA-3D Version 17.0.0 [0:1drawings\2019\193660WG\CALCS\19366-6'wide opening.r3dl Page 7 RISA-3D Version 17.0.0 [ON\drdwings12019\19366\DWG\CALCS\19365-6'wide opening.r3d1 Page 8 '',r I 'A Company r Brad Young 8Associates Mar 17,2020 '''�'�� Company19ner Brad Young 6Assouates Mar 17.2020 �eslgner : 7 Che PM Job NOer CW 328hPM Job eu : 6'wid Checked By Job eu e 6'wide ,- �, Model Name 6'wlde frame ..re�e�scrcxww++w Model Name 6'wltle frame Checked By: Envelope Member Section Deflections Service Envelope AISC 15th(360-16):ASD Steel Code Checks(Continued) Member Sec x 3lnl LC v M1 LC z lie! LC a Rotate.l-C n1 W.,J.0 Jm UT... LC Member Shape Cede OW* L04.00 LC She_La... POCJo Pnt/o...Mnvv/..Mna/., Cb Eon 1 M1 1 max q 1 4 0 4 0 4 0 4 I NC 4 NC 4 3 M3 Z12Jc20J .129 1.626 6 .110 3 V 61a5.5..131.0.. 94945.988 f.399 41-lb 2 pftn 0 {1- 0 1 t- 0 1 1283e-..2 ',NC 7 NC 1 4 'M4 HS r .108 0 L 1. .O1&30_vI6 55266 67 21; 6935(6933203N7 3 2 max 0 3 .003 1 .229 ,2 0 4 NC 4 NC 4 5 M5 HSS3X_ .052 3 6 .020 3 y 662.63S6721 6.6935.693 1.731 41-lb 4 :mitt -.002 1":' .001 3 " 0 1'-1.2e3e_2 `NC 1 759�15 2 5 3 max -.001 3 -.002 3 .304 2 0 4 NC 4 NC 4 6 =.min -.003"'ff`�.004 1 > 0 1 1-12835 2 '%NC' Y 572.1'13 1;2 Material Takeoff 7 4 max -.001 3 -.005 3 .198 2 0 4 NC 4 NC 4 Material Size pieces LenatNfi WNaMI81 -.003 -.012 t Hot Rolled Steel 9 9 5 max -.001 3 .009 3 0 4 0 4 NC 4 NC 4 3 A500 Gr.46 HSS3X3X4 4 37 3 11 11 M2 1 max: 0 4 0 4 0 4 0 4 NC 4 NC 4 4 - Togl HR:Steel $ 43 _4 '12 i'm10 i0 I 1 o t o L 2:008s.2 �'NC 1 NC '±. .i1 13 2 max -.001 3 0 r 1 .249 2 1.055e-OS 3 NC 4 NC 4 14. . s':ndn -.002 1<t 0 3 0 1 I585e•_2 :NC 1'698343 ' :'2 15 - 3 mem -.001 3 .006 1 .333 2 3.848e-04 3 NC 4, NC 4 16 miq -.003 -1 .003 3 1 0 1 0 1 NC .1-522i259 - 'r2 17 4 max -.001 3 .014 1 217 2 3.9490-04 3 NC 4 NC ll 4 18 ';min -.003 1 .006 3' 0 1 0 1 NC 1 800.1521 2 19 5 Max -.001 3 021 1 1I 0 14 3.949e)41 3 NC 4 NC 111111 4 20 { min -.003 1- .009 3 I 0 'I 0 1 614f.597 1 NC :1 ' 21 I M3 1 max 0 3 -.001 3 .283 2 2377e-O3 2 NC 4 NC 4 23 2 MS% 0 3 -.003 3 .304 23.523e-03 2 _NC 4 NC 4 24 train *.001- 1 p06."1 0 2 _ o 11T NC: 1;'4879.519 ;;2 ' 25 3 max 0 3 .003 3 .317 !2 4.659e03 2 NC 4 NC 4 26-.� min -.001 1_ =,006 1 -' 0 1:. 0 1T NC' 1 3519:762 y2 27 4 max 0 3 -.003 3 .316 2 3.5550-03.2_NC 4 NC 4 26 { 29 I_ 5 max 0 3 -.001 3 209 2 2.65e-03 2 NC 4 NC 4 31 M4 1 1max 0 4 0 4 0 4 0 4I NC 4 NC 4 33 2 max 0 3 0 2 .084 2 0 4 NC 4 NC 4 35 3 maX -.001 3 0 21 .167 12 0 4 NC 4 NC 4 37 4 max -.002 3 0 I1 244 2 0 4 NC 4 NC 4 38 c,:min -.005 1= 0 -'3 0 II;i4244wa-2 =NC 1se981.565 ;tit 39 5 max ,003 3 .001 1 317 2 0 4 NC 4 NC 4 40 : ::min -,006 1 -0 3 0 111315 ,11 NC 1 NC >.1 -41 M5 1 men 0 3 -.002 3 .198 2 5.197e-03 2 NC 4 NC 4 1 43 2 max 0 3 -.002 3 .203 2 5.168e-03 2 NC 4 NC 4 44r.: lroin 0 1-.004 1 0. 1 0 1 `NC 1 NC 1 45 3 Max 3 -.002 3 207 2 5-14e-03 2 NC 4 NC 4 46>.. ..' m min 0 1 -.004 1 0 .11 0 1 NC 1 I NC 1 47 4 mex 0 4 -.002 3 1 .211 '2 5.1i'e-03 2• NC_._ 4 NC 4 - 48 Min 0 1 -.003 1 1 0 11 0 1 NC 1_ NC 1 1 49 5 max 0 4 0 3 213 2 5.082e-03 2 NC 4 NC 4 50 1 min 0 1 -.002 1 0 I 1 -0 1 :NC' 1 '"NC 1 Envelope AISC 15th(360-16):ASD Steel Code Checks Member Shape Code Chuck 1 M1 HSS3X_ - .230 49d64 LC S0e1}0 z 6d2a7 '/.2 11M.w3M.8a3l.2C 54a4n b 2 1142 HSS3X_ _ _ .260 14684 6 .050130-z 623.4277.2115.69356933.847-11-lb RISA3D Version 17.0.0 [0-\drawings120191193660DWG\CALCSl19366-6'wide opening.r3d] Page 9 RISA-3D Version 17.0.0 [Ondrawings120191193661DWG\CALCS119366-6'wide opening.r3d] Page 10 r-. (N)Column in (E) opening: There is an existing storefront opening that is approximately 32' long that is adjacent to our new proposed cmu wall opening. To be conservative, design a new steel column to take the gravity loading at the storefront wall pier adjacent to the new wall opening. Hcol 12ft Height of column Gravity loading from (E) storefront header: PDL :_ 32ft•49ft•DLroof+ 2 32ft•aft tspsf ... = 6848Ib header dead load 1 5ft•32ft 2 2 DLmansard PLr := 4 .32ft•49ft•LLroof = 8640 lb header live load 1 sft•32ft LL 2 2 • roof Use: (N) HSS 6x2x5/16 See attached Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW 17.5 m�v I pM ,i St XC p fE1hft fill mow zfS �tS #r S) E 9- k 1rntt M1I p go E € 8 a 1 IF i 1 1 i IF 11 ! ,,, q .ii', E I Poo00000o000P nf H i� r0 0 o00Q0;0o;0;00g N_ �8 I N umu NO)07 V70 um oN T j N n y� l®x a • S So ryx< oP0000000000rio •888888888 88 889 + ot As*.0aa0a0as v a :•4 ,9q' C., m $ Po Poo QFSPR$ P4 J0 00 o0e VOW 0- 02 0000oo0o0P000 o-o- o. x S5)S ,. •x 88888888888888 S '°'' m -< xg m x TMMM gr S 0 �-. 1aa.tap"a q i 8888888888888 R k 8 a Vg$ga 5.a A e NNNNNNNNNNNNN gX --K glg1 F. o� on . .y APAAAAAAAAAAA S C -6 VVVWZIZi �`41' �� 8 8 6 o_al�m g $ s E 0000000000000f. 4 g S-. �Xr $j _ 2 0)10ONNV141GIV)O)0 moo FE1 .. o •..O Fi s . _• I I; 1 r 0 oR '0 00p0000000p0000 W� "' a o pp 8 o 888888 OPO08 I F 1 b fig II pg r v 000000�g`b'o8$o .5 S 3 c 5n '� D 13 DD D D DDD yw o000 3g NN o P F b o o g o -.Fa wow fcomcnounco NNcnN a 0 3 as s. a A uh� Y 8 O t� 0000000000000 mff V. c1? W0000000000 RV18 8 $ aaaaaaaaaaaaa g n Ay • ic 1 o[ V/ 1.5.g a s m p m e w oa m 204 O # a3 < K < < x < xic F A Sg3 g 3 C3 aE � . V" $ kgg g g g C E g 3 g o mI 8 5" m m a I. o 13 op00000000000000 .p .$ iiiiiiiiiiiiiiii$Qi iiiiiiiiiiiiiiii 11 ggill-MIR 59'5'9'S 5'S5555'555555 fi 333 fix a$ sssssssssisss 0 mm.m.. a.aa S g= x x vromv aa.aa. �< F< data ���vvv fq 5555'S555555555553RR 8 §888g888§88§§ssoopoPg s `Fi k" Ili o Fi h i Uo AtmAtaa.a.am.>a..= o ill a41, 1-. a IV SlYt? O wO+g el Sa S g g m n 3 c: ■ £ igig ,,l• it[JIB e. 0; !® r ,J«i%|Es !k;- f ii\ * 02■k . . . . . .2 / | .g e w k / f Bi§§§§ g 7 \ --</ ■I,...x ■E } . z y \ 1 §Mi » `2.. x. 5,,4 . , , . . . . . §§§§| "nil"1 : !am! 3.3I3-37 .2.S1(12.2.CD §§§§( 2 . § ,,..| _ a i ! «` |§§§| , !f . . .... Ell& _ 4 ' § {4 / \.._ .. .. �j | § ;; !7 §2:§ \§f) Seismic Loading General Site Info Decimal Degrees Latitude Location 45°26'38" 45.4439° Longitude Location 122°48'03" 122.8008° Address 12100 SW Scholls Ferry Rd,Tigard, OR 97223 Site Class D Ss 0.856 g S� 0.397 g Fa 1.200 Fv 1.900 Sos 0.685 g SD1 0.503 g Building Info Occupancy Category I or II Max height of level-h„ 15,00 T� 16 sec DSA Project No Satisfies ASCE 7-10 11.6.4 No Seismic Importance Factor(1) 1.00 Seismic Design Category D Table 11.6-1 and Table 11.6-2 are used to determine SDC. Response Spectra Is 0.734 sec To 0.147 sec At T=0 sec. --S8= 0.274 g At T= 1 sec.--Sa= 0.503 g At T=2 sec.--Sa= 0.251 g Cu 1.400 Structural System Longitudinal Transverse All other structural systems All other structural systems Fundamental Period-T8 0.152 0.152 .1 Upper Limit of Period-T 0,213 0.213 '12.8 :1 12.8 3 Equivalent Lateral Force Structural System-Intermediate Reinforced CMU Longitudinal Transverse Response Modification Factor-R 3.50 _ 3.50 Overstrength-S2 2.50 2.50 Deflection Amplification-Cd 2.25 2.25 Cs 0.196 0.196 ASCE 7-10 eq. 12.8-2 Cs Max 0,673 0.673 ASCE 7-10 eq. 12.8-3 Cs Min 0.030 0.030 ASCE 7-10 eq. 12.8-5 V=Cs*Weight Ultimate Seismic Force Cs 0.196 0.196 (-) Seismic Loads c U O O) -- m O O li I > >ro J '- _ _ A co o o ro u 'F 'E E N g ' c •E 0No ono oN o c x m v a) CD m d al J (J) C2 g W C . U) II- Q lL 0.196 Wd= 14.0 16.0 66 10 X 1.00 X 1.00 Transverse V1 25.0 78 78 78 V2 110.0 13.0 9 2 4 645 645 645 V3 126.0 394 394 394 V4 0 0 0 V5 0 0 0 V6 0 0 0 V7 0 0 0 V8 0 0 0 V9 0 0 0 V10 _ 0 0 0 V11 0 0 0 V12 0 0, 0 V13 _ 0 0 0 V14 0 0 0 `O t its C C ) — O O E n o. .O U P Cz E o N L. O N Oa N o a) 0 ro o o N J (I) D_' 2 O O _ ."-- W C _ V) > ce u. > ce u_ 0.196 Wd= 14.0 16.0 0.0 0.0 0.0 66.0 10.0 - X 1.00 X 1.00 Longitudinal V15 0 0 0 V16 0 0 0 V17 _ 0 0 0 V18 0 0 0 V19 _ 0 0 0 V20 0 0 0 V21 0 0 0 V22 0 0 0 V23 0 0 0 V24 0 0 0 V25 0 0 0 V26 0 0 0 V27 0 0 0 — •') .l - Wind Loading -Directional Procedure-Based on ASCE 7-16 General Info - Occupancy Risk Category II Basic Wind Speed(V) 97.00 mph ...,.-__. Directionality Factor Kd 0.85 Exposure Category B Ground Elevation 237.00 ft 0.99 Ke Factor Gust-effect Factor G 0.85 Building Type Enclosed Building 0.18 GCpi q• 24,09 psf Building Information Longitudinal Dimension of Building 82 ft UB Ratio Long 2.411764706 Transverse Dimension of Building 34 ft UB Ratio Trans 0.414634146 Mean Height of Building 12.67 ft h/L Long 0.15 h/L Trans 0.37 Topographic Factor per sec.26.8-1 r xfr1. r ;TO. III;peed•up 6pecd-up x(Opwlod) r` x(Dotranlad) x(Upwtad) x(Dowmdad) P „emsHa .,,e,,,., � 1 xaiii ‘,, ESCARPMENT 2-D RIDGE OR 3-D AXISYMMETRICAL HILL Type of Hill or escarpment Escarpment Building Location Downwind Rise of hill or escarpment(H) 75.00 ft Run of hill(to peak)or escarpment(to 0.00 ft upper level) Distance(upwind or downwind)from 0.00 ft the crest to builiding site(x) Lh 0.00 ft Kt 0.00 K2 1.00 Wind Factors Topographic Factor q,•Kz•Kzt•Kd•Ke Height(ft) Kz K3 K=r System 0.00 0.70 0.000 1.000 14.221 5.00 0.70 0.000 1.000 14.221 10.00 0.70 0.000 1.000 14.221 15.00 0.70 0,000 1.000 14.221 16.00 0.70 0.000 1.000 14.221 17.00 0.70 0.000 1.000 14.221 18.00 0.70 0,000 1.000 14,221 19.00 0.70 0.000 1.000 14.221 20.00 0.70 0.000 1.000 14.221 25.00 0.70 0.000 1.000 14.221 30.00 0.70 0.000 1.000 14.221 35.00 0.73 0,000 1.000 14.862 40.00 0.76 0.000 1.000 15,440 45.00 0.79 0.000 1.000 15.968 50.00 0,81 0.000 1.000 16.456 55.00 0.83 0.000 1.000 16.910 56.00 0.84 0.000 1.000 16.998 57.00 0.84 0.000 1.000 17.084 58.00 0.85 0.000 1.000 17.169 59.00 0.85 0.000 1.000 17.253 60.00 0.85 0.000 1.000 17.336 (/ - Wind Loading-Method 2•Based on ASCE7-10 Wind Perpind leg larto Ridge on MWFRS a • WIND DIRECTION,. LI Lr LEFT SfI'Xr9I U 4 OVERHANG fi Ps OVERHANG ELEVATION ELEVATION MGM+OI-O I RISE RISE I FROM.0LO 12 12 P4 p. OVERHANG NDWARD LEEWAR WIND PERPINDICULAR TO RIDGE CONDITION FOR MWPRB Loading Cases Windward Leeward Wind direction to Case Name Elevation Km Lr 1.2 Rise Elevation Hw2 L3 L4 Rise Building Wt L 10.33ft 1.00ft 9.00ft 0.00ft 4.00 _ 10.33ft 1.00ft 0.00ft 9.00ft -4.00 Transverse R 10.33 ft 1.00 ft 9.00 ff D.00 ft 4,00 10.33 ft 1.00 ft 0.00 ft 9,00 ft 4.00 EWERS Case Name P1 P2 P3 P4 P5 FRI FR2 FTOT W1 0.37 paf -7.98 pat -9.67 psf 7.11 psf 8.60 psf 4.68 pif 28.19 pl? 33 pif R 0.37 psf -7.96 psf -9.67 psf 7.11 psf 8.60 psf 4.66 pit 28.19 pif 33 pif 5 9 Wind Loading-Directional Proc edure Parapet Condition on MWFRS • WIND DIRECTION r 5. LEFT SHOWN MECH. SCREEN OR Pa As -� INTERIOR PARAPET Pam i/ P4 a It FR3 _ _ ti - \ 4,ELEVATION °.6 w d FROI9 +a'-o' w d 4 is P3 --"-- - _P6 I tb d, -�- P' I-- WINDWARD LEEWARD PARAPET CONDITION FOR MWFR8 Loading Cases Elevation(ft) Case Name Windward Leeward Hp1 Hwi Hp2 HW2 I Hp3 #of Interior Wind direction to Parapets Building W2 L 14.00 ft 14.00 ft 3.00 ft 14.00 ft 3.00 ft 14.00 ft 0.00 ft 0 Transverse R 14.00 ft , 14.00 ft 3.00 ft 14.00 ft 3.00 ft 14.00 ft 0.00 ft 0 MWFRS Case Name P, P2 P3 I P4 P6 P6 FRI I FR2 FR3 FTOT W2 L 21.33 psf 21.33 psf 7.11 psf 14.22 psf 8.60 psf 13.44 psf 113.77fif 102.89 plf _0.00 plf 216.66 plf R 21.33 psf 21.33 psf 7.11 psf 14.22 psf 8.60 psf 13.44 psf 113.77 plf 102.89 plf 0.00 plf 216.66 plf (ar) • „9,,.\-(,, (a\ \_' c'k a ____-71' n C ) Loi ,. U-I ru/tc, 0 , T,Li_ 1 • , , . _____LL °(,,' i 0 \l,, p _ I Va..- 615 f c. - • --: __ 1 U5'- 11`1,8 `,`b.s T 5 d n , - ...,.,, . , t \,3,. = 2.vA, el ,___,t_t , .‘, - , t5—.-4-. S.6`1I Lateral Shearwall Check -Transverse Direction Along the transverse direction, there are two approx. 2'wide newATM openings that will • be occurring in the existing cmu wall. Check the existing remaining cmu wall piers for the applied design loads. There are three cmu segments along the front of the entire building (including adjacent tenants). Lateral loading: Eeq.main 19.3k portion of EQ shear in the main building := 7o4ft2 Wall := 66psf Cs := 0.196 Wallarea Eeq.wall Eeq.main + Cs•(Wallarea.Wall ) = 28.407•k Wwall 5.69k wind loading -seismic loads govern VEQ Eeq.wall VEQ = 28.407•k Ltotal := 9.5ft+ 12ft+ loft Ltotai = 31.5 ft 14ft Height of wall at roof level Hwall VEQ = 28.407.k total EQ shear in the direction along this wall Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366,xmcd Engineer: CW Shearwalls piers along Front: ' Check the (E) masonry shearwalls based on Rigidities. LEFT PIER: Solid Portion: h := 14ft d := 9.5ft h = 1.474 d 3 SOLID 0.4 d + 0.3 d = 1.722 RSOLID := 0 1 = 0.581 SOLID Middle portion: h := 4.83ft d := 9.5ft h = 0.508 d 3 AN := 0.1• d + 0.3 dJ = 0.166 RMID := 0 1 = 6.036 MID Section A: h := 4.83ft d := 1.5ft h = 3.22 3 DA := 0.1 d +0.3(h) = 4.305 RA := Q = 0.232 A Section B h := 4.83ft d := 1.92ft h = 2.516 d 3 AB := 0.1•/� + 0.3 — = 2.347 RB := a = 0.426 Section C h := 4.83ft d := 2ft h = 2.415 d h3 OC := 0.1 +0.3 = 2.133 RC := 1 = 0.469 \ / C Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366,xmcd Engineer: CW Section ABC RABC RA + RB + RC = 1.127 'ABC := = 0,887 RABC Pier Left Total: LEFT ASOLID—AMID+ AABC = 2.444 RLEFT 1 = 0.409 'LEFT MIDDLE PIER: h := 14ft d := 12ft h = 1.167 d 03 AMD := 0,4 h + 0.3 h = 0.985 RMD := = 1.015 di �d 'MD RIGHT PIER: Solid Portion: h := 14ft d := loft h = 1.4 d 3 ART := 0.4./� + 0.3 = 1.518 RRT := 1 = 0.659 ART Middle Portion: h := 2ft d := loft h = 0.2 d AMID 0.1 � +0.3 = 0.061 RMI • D = 16.447 MID Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW � Y Section D: h := 2ft d .— 5ft — -- 0.4 d 3 AD := + = 0.126 RD := Q = 7.911 / D Section E: h := 2ft d := 1.67ft h = 1.198 d h .\3 DE := 0.1• + 0.3H = 0,531 RE := Q = 1.883 / E Section DE RDE := RD + RE = 9.794 ADE := = 0.102 RDE Pier Right Total: ART ASOLID — AMID+ ADE = 1.764 RRT := = 0.567 ART Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW c SHEARS IN THE PIERS: , Wallt := 7.625in RLEFT VL•(0.7).1.5 VL :_ •(VEQ) = 5837.699 lb lenL := 9.5ft VI := = 7.052.psi RLEFT+ RMD + RRT Wallt•lenL RA VLa•(0.7)•1.5 VLa := R •(VL) = 1203.0341b lenLa := 1.5ft vla := Wall •len = 9.204•psi ABC t La RB VLb•(o.7)•1.5 VLb . RABC (VL) — 2206.793 lb IenLb := 1.92ft vlb Wallt — 13.19.psi IenLb RC VLc•(o.7)•1.5 VLc RABC (VL) = 2427.873 lb IenLC := 2ft vlc := Wallt•IenLc = 13.93•psi RMD VM•(0.7)•1.s VM :_ •(VEQ) = 14480.23 lb IenM := 12ft vm := = 13.847.13Si RLEFT+ RMD + RRT Wallt•IenM RRT VR•(o.7)•1.s VR :_ •(VEQ) = 8089.014 lb lenR := loft yr :_ = 9.282•psi RLEFT+ RMD + RRT Wallt•IenR RD VLd•(0.7)•1.5 VLd • RDE •(VR) = 6533.834 lb lenLd := sft vld IenLd:= Wallt — 14.996•psi RE VLe•(0.7)•1.5 VLe := RDE (VR) = 1555.18 lb lenLe := 1.67ft vle := Wallt IenLe — 10.686•psi vmax max(via,vlb,vlc,vm,vid,vle) = 14.996•psi max applied stress Allowable shear stress in Masonry fm := 1s00 Fvm :_ ?45 •F•psi = 21.786•psi ***Assumed MNd = 1.0 Eq. 2.29AC1 530 Fvm = 1.453 > 1, so (E)wall piers are OK vmax Copyright 2020 Brad Young &Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW cc ITEM 8: (N) HVAC ON THE ROOF 1 i There will be 2 new HVAC units with a maximum weight of 750 lbs on the roof replacing existing units in existing locations. The existing units weighed approximately 500 lbs. There will also be 2 new condenser units on the roof each weighing 55 lbs that will be replacing 4 condenser units in approximately same location and size. Check the (E)framing for new loading. Please note the new condenser units will weigh less than the 4 units that are being replaced, so the new loading for those are OK by inspection. RJ1 -(E) 36" Red-S joist: Check (E)joist for(N) HVAC framing. L := 48.5ft Length of member 32i11 a s2in wtrib = 2.667ft trib width = 14 lb DI-roof II'I ft2 roof dead load LLroof = 20 lb roof live load ft New soffit ceiling loading @ L= 31' to 40' & L=42' to 45': wDL :— 17plf soffit dead load New HVAC loading @ L= 20.5' & 42.50': P 75olb = 187.5 lb HVAC loading HVAC �— 4 g Use: (E) 36" Red-S joist @ 32" o.c. See attached Copyright 2020 Brad Young&Associates Print Date: 3/17/2020 File Name: 19366.xmcd Engineer: CW ele,C)SPEC- Project: Project Location: GRESHAM, OR Type: R31 - (E) JOIST Folder: Folder Date: 3/17/20 11:20 AM RedSpec" by RedBuilt'" Designer: CW v7.1.10 Comment: 36" Red-STM @ 32" o.c. This product meets or exceeds the set design controls for the application and loads listed This truss design is feasible. The finished design shall be produced by RedBuilt Engineering. All open-web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specific loads. Do not use this analysis to verify the capacity of existing trusses. DEFLECTIONS(in) % Design Allow. Design Allow. Pass/Fail Span Live 37% 0.909 2.425 L/640 L/240 PASS Span Total 55% 1.763 3.233 L/330 L/180 PASS SUPPORTS Support 1 Support 2 Live Reaction(Ib)(DOL%) 1309(125) 1309(125) Dead Reaction(Ib) 1097 1332 Total Reaction(Ib) (DOL%) 2406(125) 2641(125) Bearing Top Chord Top Chord Support Wall Wall Bearing Clip (Red-S)S-Clip (Red-S)S-Clip Approx.Clip Height 3.5" 3.5" Approx.Clip Width 5.5" 5.5" Assumed Bearing Width 3.5" 3.5" SPANS AND LOADS Dimensions represent horizontal clear span. Member Slope:0/12 b , 48'-6.0" APPLICATION LOADS Type Units DOL Live Dead Partition Tributary Member Type Uniform psf Roof(125%) 20 14 0 32" Roof Joist ADDITIONAL LOADS Type Units DOL Live Dead Location from left Application Comment Point lb Roof(125%) 0 188 20.-6.0" Adds To (N)HVAC Point lb Roof(125%) 0 188 42.-6.0" Adds To (N)HVAC Uniform pif Roof(125%) 0 17 31.-0.0"to 41.-0.0" Adds To (N)soffit Uniform pif Roof(125%) 0 17 42'-0.0"to 45'-0.0" Adds To (N)soffit NOTES • Building code and design methodology: 2018 IBC ASD(US). • No repetitive member Increase applied in design. •Truss design includes consideration for partial span application live load, •Continuous lateral support required at top edge. Lateral support at bottom edge shall be per RedBuilt recommendations. • Pricing Load(pif)= 103 • Pricing Index(pif)= 110 O:\drawings\2020\20051\DWG\CALCS\20051,red 3/17/2020 11:20:33 AM Project: Folder: RJ1-(E) JOIST Page 1 of 1 The products noted are Intended for interior,untreated,non-corrosive applications with normal temperatures and dry conditions of use,and must be Installed In accordance with local building code requirements and RedBuilt"recommendations,The loads,spans,and spacing have been provided by others and must be approved for the specific application by the design professional for the project.Unless otherwise noted,this output has not been reviewed by a RedBuilt'" associate.PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. RedBulltT",RedSpec",Red-I'",Red-I45'M,Red-I45LT",Red-I58",Red-I65", Red-I90",Red-I90H",Red-I90HS",Red-L",Red-W",Red-S'TM,Red-M", Red-H",RedLam",FloorChoice"are trademarks of RedBuilt LLC,Boise ID,USA. Copyright©2010-2019 RedBuilt LLC.All rights reserved. 6 617