Loading...
Report (3) OFFICE COPY CIq4f Geopier Northwest GEopIER ® 40 Lake Bellevue,Suite 100 APR Bellevue,Washington 98005 9 z��� Tel. 425.646.2995-Fax 425.646.3118 crrAv OF Gr.‘ www.geopier.com REVISION ?0"'Dl lG Dwi3Ot April 9, 2020 ) aZLo Q 000 TO: Corbett Stewart 7y SV 72'D err Essex General Construction Inc.. SUBJECT: Design Submittal Geopier-Impact Ground Improvement Dartmouth Apartments—Tigard, OR Dear Mr. Stewart: This letter and the attached documents represent our design submittal for Geopier® soil reinforcement at the site of the Dartmouth Apartments Project located in Tigard, OR. The following paragraphs document our design of the patented Geopier-Impact reinforcement system for support of the building footings. Our approach does not include support of the building slab. Geopier Reinforcement Design Subsurface information, as documented in the geotechnical report completed by GeoDesign on February 18, 2019, has been used as a basis for our design. The subsurface conditions below the existing grades consist of medium stiff to very stiff silts. Groundwater was encountered at depths of approximately 8 to 20 feet below ground surface during explorations. In view of the medium stiff silts coupled with a high groundwater table, the Geopier-Impact system or "displacement process" will be used to install the Geopier elements. The Geopier- Impact system which we propose to utilize consists of a hollow mandrel with an internal compaction surface which is driven into the ground using a powerful static down force augmented by dynamic vertical impact energy. After driving to the design depth, the hollow mandrel serves as a conduit for aggregate placement. As the mandrel is raised and re-driven downward thin lifts of compacted aggregate are formed and compacted both vertically and laterally. The process is repeated until the rammed aggregate pier is constructed. We envision the Geopier soil reinforcement will be installed from near existing grades following rough grading of the site. Our Geopier-Impact elements will be installed to a depth of 30 feet or refusal whichever occurs first. The refusal criteria will be less than 6 inches of mandrel advancement in 30 seconds. The Geopier elements will be installed and constructed to ground surface. Our Geopier elements will be installed directly beneath the footings and shear wall mats. Currently, our design consists of the construction of 1,214 Geopier elements which can provide an allowable bearing capacity of 5,000 psf with a '/z increase for short term duration loads. Our pier count and spacing is designed based off the loads provided by the design team. Foundation Settlement For our analysis, settlements are first calculated for a zone extending from the bottom of the footing to the depth of the reinforcement. Additional settlement may occur in the "lower zone" or in the unimproved soil beneath the reinforced zone. The lower zone settlement is calculated using an elastic or consolidation approach depending on the soil type. Based on our analyses, we estimate that total settlement (static) will be less than one inches and differential settlement will be less than one-half inch between columns. Please see our attached calculations for additional information. Geopier'and Rammed Aggregate Pier'are registered trademarks of Geopier Foundation Company,Inc_ Dartmouth Apartments April 9, 2020 Tigard, OR Page 2 Geopier Installation The installation of the Geopier reinforcement, including a downward modulus test, will be completed in general accordance with the specifications. The installation and the modulus test will be conducted under the supervision of an experienced geotechnical engineer from Geopier Northwest. The modulus test will consist of loading the Geopier element in increments to 150% of the design load while measuring deflections to verify the design parameters. The modulus test will also incorporate a creep test at 115% of the design load. We appreciate the opportunity to work with you on this project. If you have any questions or require further information, please call. Sincerely, Geopier Northwest Inc. PROF p •N o, 9� Yi4 tip\ " `SNDER 80U Exams: tt/3t /Loll Alex Bogue P.E. David Van Thiel, P.E., G.E. Attachments: Geopier Foundation Plan and Construction Notes, and Geopier Capacity and Settlement Calculations GEOPfERd Foundation Company GEOPIER® Project:land&DartDartmouthrou No.:Near boring B-1 Engnr:AB SQUARE FOOTINGS Date: Version 3.0.6 August 2013 INPUT PARAMETER VALUES: TOP OF PIER STRESS-SQUARE FOOTINGS 'Parameter Symb Val. Parameter Symb Equation F8 F10 RAP diameter(in) d 22 Column load(kips) P 300 405 Depth to groundwater(It) dgw 10 Required fooling width(It) Br sgd(P/gall) 7.75 9.00 Total unit weight of soil(pcf) g 115 Selected footing width(It) B 8 10 Sod frict.angle(decof 26 Footing beating pressure q P!(BB) 4.69 4.05 Max.hor.pressure(psf) pmax 2500 Required No.RAP elems Nr Moen 7.5 10.1 From Table 4.2: Selected No.RAP atoms N 8 10 RAP cell cap.(kips) Ogee 40 Area replacement ratio Ra hi-Ad/CBS) 0.330 0.284 Footing bearing press.(ksf) gall 5 Stiffness ratio Rs kg/km 12.0 12.0 RAP stern.modulus(po0 kg ISO Stress al top of GP(ksf) qg q'Rx/(Rs'Ra-Ra+1) 12.15 12.45 Soil stiffness modulus(poi) km 12.5 Load at top of GP(kips) Qg gg'Ag 32.1 32.9 SHAFT LENGTH REQUIREMENTS Depth of Embedment Df 2.0 2.0 Trial shaft length(ft) Hs 21.0 21.0 Dril depth(ft) Hdrill Df+Hs 23 23 Frictional resistance force(kips) an fs"pr d"Hs 130 130 Allowable tensile resistance(kips)Qsall Qs/2 65 65 Allowable end-bearing rest.(kips) Qeb Qeb 3 3 Is shaft long enough? Qs+Qeb>Pcdem4 ok ok INPUT PARAMETER VALUES: UPPER ZONE SETTLEMENT-SQUARE FOOTINGS Upper Zone Elastic Parameters Parameter Symb Equation Parameter Sym Val UZ Settlement Approach 1Stiffne$s,2-Modulus 2 2 Pier Modulus Layer 1(kat) Egi 2800 Thickness of UZ sublayer((It) H.) 5.0 5.0 Pier Modulus Layer 2(kW') Egg 2500 Thickness of UZ sublayer 2(ft) H,,, 5.0 5.0 Pier Modulus Layer 3(ksQ Eg3 1400 Thickness of UZ sublayer 3(ft) H„n 5.0 5.0 Pier Modulus Layer 4 Bad) Eg4 1400 Thickness of UZ sublayer4(ft) Ha, 5.0 5.0 Pier Modulus Layer 5(ksf) Eg5 2500 Thickness of UZ sublayer 5(ft) H.s 3.0 3.0 Soil Modulus Layer l(ksf) Emi 200 Total UZ Thickness OK? Hoz a Hs+d ok ok Soil Modulus Layer2(ksf) ErrQ 75 Composite Modulus Layer 1(ksf) Eea„a, Eg1Ra+Emt(1-Ra) 1058 886 Soil Modulus Layer 3(ksf) Emi 50 Composite Modulus Layer 2(ksf) E„.„re Eg2Ra+Ern2(1-Ra) 875 715 Soil Modulus Layer 4(ks) Ern4 150 Composite Module,Layer 3(ksf) E.a„as Eg3Ra+Em3(1-Ra) 495 408 Soil Modulus Layer 5(ksf) Ems 175 Composite Modulus Layer 4(ksf) Eaa,„a, Eg4Ra+Ern4(1 Ra) 562 480 Composite Modulus Layer 5(ksf) Ero„1a E95Ra+Emb(1-Ra) 942 789 Sett.of LZ sublayer 1(n) s,a, 00110 orsfunas'WEcemp 0.23 0.25 Sett.of LZ sublayer 2(n) 4az q1u-2"H,d/E,a„,,0 0.12 0.16 Sett.al LZ sublayer 3(it) s,as q1u-3'H,m//EE,a„,as 0.10 0.14 Sett_of LZ eublayer 4(n) a,a, g1n-4'H,aq/E,a„,at 0.05 0.07 Sett.al LZ sublayer5(n) s,, q1u-51N,s/Eaa„,., 0.01 0.02 Total Upper Zone Settlement(in) s,a s,a,+s,).+s,as+R,,+K.,, 0.50 0.64 INPUT PARAMETER VALUES: LOWER ZONE SETTLEMENTS-SQUARE FOOTINGS Parameter Symb Val. Parameter Symb Equation FB F10 Plowable and-bearing(kips) Qeb 3 Dpih to bottm of LZ from fig(It) X'B X'B 32 a 40 E or 4 for LZ sublyr I E,/e, 0.015 Upper zone thickness(ft) H. Hs+d 22.8333 22.8333 E or cr for LZ sublyr 2 Ey/c,a Lower zone thickness(ft) Ha H2b-Hlz 9.2 17.2 E or for LZ sublyr 3 Es/ca Thickness of LZ sublayer TO Ha, 9.2 172 E or co for LZ sublyr 4 Ea/ca, Thickness of LZ sublayer 2(ft) HI. E or 4 for LZ sublyr 5 EaIca Thickness of LZ sublayer 3(ft) Has Cale.settlement to XB X 4 Thickness of LZ sublayer4(ft) Ha, Thickness of LZ sublayer 5(ft) H(a Total IS thickness ok7 ok ok E or;for LZ subyrl E,/c„ E(ksf)orc, 0.015 0.015 E or for LZ sublyr 2 Er/c„ E(ksf)orc, 0 0 E orq for LZ sublyr 3 Es/ou E(kef)dr4 0 0 E or c,for LZ sublyr 4 E,/co. E(ksf)orc, 0 0 E or for LZ sublyr 5 Es/cos E(ksf)orc 0 0 Initial stress for sublyr 1(ksf) P., 2.172 2.383 Initial stress for sublyr 2(ksf) P. 2.414 2.835 Initial stress for sublyr 3(ks1) P'a, 2.414 2.835 Initial stress for sublyr 4(ksf) Pa 2.414 2.835 Initial stress for sublyr 5(ksf) Pa 2.414 2.835 Fig stress on sublyr I(hat) API q1 0.18 0.19 Fig stress on sublyr 2(ksf) AP2 q1 0.14 0.12 Fig stress on sublyr 3(ksQ APS q'1 0.14 0.12 Flg stress on sublyr 4(ksQ AP4 q1 0.14 0.12 Fig stress on sublyr 5(ksf) APS q1 , 0.14 0.12 Sell of LZ sublayer 1(in) ski r.,wa,m.Sec,.oa,yvap 0.06 0.10 Sett.of LZ sublayer 2(in) Ka wn.aaltan(nz.ortyraa) 0.00 0.00 Sett of LZ sublayer 3(in) Ka o 5lm t((rms.on),m) 0.00 0.00 Sett.of LZ sublayer 4(in) K. wmwxrtlnoo'onyaen 0.00 0.00 Sett.of LZ sublayer 5(in) se o.ereaswe(lr.n.onyrm) 0.00 0.00 Total lower zone sett.(in) so Sa,+Sa,+sas,S,+Sas 0.1 0.1 Total UZ+LZ settlement(in) 5 0.6 0.7 Note:When"No LZ"Is displayed-thicknesses of lower zone should equal 0 p9 1 of 1 GEOP7ER® Foundation Company GEOPIER® Project:72nd S Dartmouth No.:Borings B2-84 Engnr:AB SQUARE FOOTINGS Data: Version 3.0.6 August 2013 INPUT PARAMETER VALUES: TOP OF PIER STRESS-SQUARE FOOTINGS Parameter Symb Val. Parameter Symb Equation F6 F8 FIO i RAP diameter(in) d 22 Column load(kips) P 130 295 482 Depth to groundwater(ft) dgw 10 Required fooling width(ft) Br sgrl(P/gall) 5.10 7.68 9.82 Total unit weight of soil(pet) g 115 Selected looting width(ff) B 6 6 10 Soil Pod.angle(degr) f 26 Footing bearing pressure q P/(B"B) 3.61 4.61 4.82 Max,hot.pressure(psi) max 2500 Required No.RAP elems Nr Ware' 2.4 5.4 8.8 From Table 4.2: Selected No.RAP ebbs N 3 6 9 RAP cell cap.(kips) Qoet 55 Area replacement ratio Ra N'Ag/(B`B) 0.220 0,247 0.238 Footing bearing press.(kaQ qall 5 Stiffness ratio Rs kg/km 10.0 10.0 10.0 RAP stiffn.modulus(pci) kg 200 Stress at lop of GP(ksQ qg q`Rs/(Rs'Ra-Ra+1) 12.12 14.28 15.36 Sot stiffness modulus(pci) km 20 Load at top of GP(kips) Og gg'Ag 32.0 37.7 40.5 SHAFT LENGTH REQUIREMENTS Depth of Embedment Df 2.0 2.0 2.0 Trial shaft length(ft) Hs 21.0 21.0 21.0 Da depth(ft) Hdr6 Of+Hs 23 23 23 Frictional resistance force(kips) Os fs'pi'd'Hs 130 130 130 Allowable tensile resistance(kips)Orel Qs/2 65 65 65 Allowable end-bearing rest.(kips) Qeb Qeb 3 3 3 Is shaft long enough? Qs+Qeb>Pcdem? ok ok ok INPUT PARAMETER VALUES: UPPER ZONE SETTLEMENT-SQUARE FOOTINGS Upper Zone Elastic Parameters Parameter Synl, Equation Parameter Gym Val UZ Settlement Approach 1S5ftnesa,2-Modulus 2 2 2 Pier Modulus Layer 1(ksQ Eg1 2800 Thickness of UZ sublayer 1(ft) Hm, 5.0 5.0 5.0 Pier Modulus Layer2(ksQ Eg2 2800 Thickness of UZ sublayer2(ft) H,m 5.0 5.0 5.0 Pier Modulus Layer 3(ksQ Eg3 2500 Thickness of UZ sublayer 3(ft) Hm, 5.0 5.0 5.0 Pier Modulus Layer 4(red Eg4 2500 Thickness of UZ sublayer 4(ft) Hm 5.0 5.0 5.0 Pier Modulus Layers(kat) Eg5 3000 Thickness of UZ sublayer 5(ft) H,os 3.0 3.0 3.0 Sol Modulus Layer 1(loaf) Em1 200 Total UZ Thickness OK? Huz.Ha+d aR ok ok Soil Modulus Layer2(Vast) Em2 200 Composite Modulus Layer 1(red) Low Eg1Ra+Em1(1-Ra) 772 843 818 Soil Modulus Layer 3(ksQ Em3 150 Composite Modulus Layer 2(ksQ Em,,5 Eg2Ra+Em2(1-Ra) 772 843 818 Soil Modules Layer 4(hst) Em4 150 Composite Modulus Layer 3(lost) E,r,,,ya Eg3Ra+Em3(1-Ra) 667 732 708 Soil Modulus Layer 5(kaQ Ems 200 Composite Modulus Layer 4(lei) Ea,,,yy Eg4Ra+Em4(1.Ra) 667 732 708 Composite Modulus Layers(kV) Em,ys Eg5Ra+Eno(1-Ra) 816 893 865 Sett.of LZ sublayer l(in) s,y, Vika or glo-s'yEuo np 0.21 0.28 0.32 Sett,of LZ sublayer 2(in) s,m q'lo-2'H,m/Emy,5 0.07 0.12 0.17 Sett.of LZ sublayer 3(in) im q'17-3'H,s/E„y,5 0,03 0.06 0.10 Sett.of LZ sublayer 4(in) som q'lo-a'H,yt/E,,,,,yy 0.02 0.03 0.06 Sell,of LZ sublayer 5(in) s,es q`17311m/Ew,,,s 0.01 0,01 0.02 Total Upper Zone Settlement(in) ay: s,a,+ym+s,m+s,m+s,m 0.34 0.51 0.66 INPUT PARAMETER VALUES: LOWER ZONE SETTLEMENTS-SQUARE FOOTINGS Parameter Symb Val.J Parameter ,crab Equation _L F6 FB Fin Allowable end bearing(kips) Qeb 3 Dpth to bottm of LZ from ftg(11) X'B X'B 24 32 40 E or o,for LZ subyr 1 Er I cm 0.015 Upper zone thickness(ft) Ha Hs+d 22.8333 22.8333 22.8333 E or c,for LZ sublyr 2 Ea/c,a Lower zone thickness(ft) Hp H2b-Hlz 1.2 9.2 17.2 E or c,for LZ subyr 3 Es/&s Thickness of LZ sublayer 1(ft) Her 1.2 9.2 17.2 Eor&for LZ subyr 4 E,I;, Thickness of LZ sublayer 2(ft) Hot E or c,for LZ subyr 5 Es/dry Thickness of LZ sublayer 3(ft) Hm Cele.settlement to X'B X 4 Thickness of 12 sublayer 4(h) Hp, Thickness of LZ sublayer 5(ft) Hps Total LZ thickness ale? ok ok ok E or;for LZ subyyr 1 E,/co E(WI)or; 0.015 0.015 0,015 E or for LZsublyr 2 Eaf zo E(kat or 0 0 0 E or 0,for LZ subyyr 3 Esr4, E(ksf)or c, 0 0 0 Eor e,forLZsubyr 4 Elf c„ E(kst)or; 0 0 0 E orc,for LZ subyr 5 Es/c,s E(kaQ or ce 0 0 0 Initial stress for subyr 1(kaQ P',t 1.962 2.172 2.383 Initial stress for subyr 2(Rd) P'm 1.993 2,414 2,835 Initial stress for subyr 3(ksQ Pee 1.993 2.414 2.835 Initial stress for subyr 4(ksQ P'm 1.993 2,414 2.835 Initial stress for subyr 5(kaQ P',s 1.993 2.414 2.835 Ftg stress on subyr 1 Oaf) AP1 91 0.11 0.18 0,22 ftg stress on subyr2(ksQ AP2 91 0.10 0.13 0.14 Ftg stress on subyr 3(lost) Ap3 91 0.10 0.13 0.14 Ftg stress on subyr 4(ksQ AP4 q'I 0.10 0.13 0.14 Ftg stress on sublyr 5(ksQ AP5 q'I 0.10 0.13 0.14 Sett.of LZ sublayer l(n) set mr'eurlwyy,,.onvrorl 0.01 0.06 0.12 Sett.of LZ sublayer2(in) sm mremsoarez.onyv.,zr 0.00 0.00 0.00 Sett,Of LZ sublayer 3(el) on, ermmeptvm.o»yywl 0.00 0.00 0.00 Selo.of LZ sublayer 4(n) sp, awwea 591 eu„owyeor 0.00 0.00 0.00 Sett.of LZ sublayer 5(in) spa 0005 kagrm.ovsuwsr 0.00 0.00 0,00 Total lower zone sett.(In) sp sp,+sm+spy+sp,+spa 0.0 0.1 0.1 Total UZ+LZ settlement(in) s 0.3 0.6 0.8 Note:When"No LZ"is displayed,thkknesses of lower zone should equal 0 pg 1 oft