Loading...
Specifications nFcIcE, COI"' L'Cl/�2oOct/6 / 126- " perlo SUBMITTAL CONSTRUCTION JAGUAR LAND ROVER OF Subcontractor: River City Glass & Window Inc. PORTLAND Submittal#: 110 Rev#: 0 Specification Section: 08 41 00 RECEIVED Perlo Job Number: 1368 Date Submitted: 5/3/19 JUN 1 0 2019 CITY OF TIGARD Submittal Item: Storefront Calculations3UILD!NG DIVISION Please Respond By: 5/10/19 PROJECT SITE: PERLO CONSTRUCTION HAS REVIEWED THIS SUBMITTAL Jaguar Land Rover of Portland DATE 5/3/19 SIGNED Jake Jensen 10125 SW Washington Square Road REVIEW BY CONTRACTOR IS UNDERTAKEN SOLELY TO SATISFY ANY OBLIGATIONS OF CONTRACTOR TO OWNER Tigard, Oregon 97223 AND DOES NOT IN ANY WAY RELIEVE SUBCONTRACTOR FROM HIS OBLIGATION FULLY TO PERFORM ALL SUBCONTRACT REQUIREMENTS, NOR SHALL SUCH REVIEW APPROVER: GIVE RISE TO ANY RIGHT OF ACTION OR SUIT IN FAVOR OF SUBCONTRACTOR OR THIRD PERSONS AGAINST CONTRACTOR. REVIEW DOES NOT EXTEND TO Mildren Design Group CONSIDERATION FOR STRUCTURAL INTEGRITY,SAFETY, Attention: Curt Trolan DETAILED COMPLIANCE WITH CONTRACT REQUIREMENTS OR ANY OTHER OBLIGATION OF THE SUBCONTRACTOR. 7650 SW Beveland Street, Suite 120 SUBCONTRACTOR IS FULLY RESPONSIBLE Tigard, Oregon 97223 FOR CONFIRMING AND CORRELATING ALL DIMENSIONS an ; g g FABRICATING AND CONSTRUCTION TECHNIQUES; COORDINATING HIS WORK WITH THAT OF ALL OTHER TRADES;AND THE SATISFACTORY PERFORMANCE OF HIS GENERAL CONTRACTOR ENTIRE WORK IN STRICT ACCORDANCE WITH THE CONTRACT DOCUMENTS. Approver's Stamp: Perlo Construction Attention: Jake Jensen NO EXCEPTION NOTED ® MAKE CORRECTIONS NOTED ❑ 11450 SW Amu Street REJECTED ❑ REVISE AND RESUBMIT 0 Tualatin, Oregon 97062 THIS REVIEW IS FOR GENERAL CONFORMANCE WITH DESIGN CONCEPT ONLY. ANY DEVIATION FROM PLANS OR SPECIFICATIONS NOT CLEARLY NOTED BY THE CONTRACTOR HAS NOT BEEN REVIEWED. REVIEW SHALL NOT CONSTITUTE A COMPLETE CHECK OF ALL DETAILED DIMENSIONS OR COUNT OR SERVE TO RELIEVE THE CONTRACTOR OF CONTRACTUAL RESPONSIBILITY FOR ANY ERROR OR DEVIATION FROM CONTRACT REQUIREMENTS. TM RIPPEY CONSULTING ENGINEERS PORTLAND, OREGON DATE: 5/9/2019 BY, VASTLY LEBEDEV OR CC8 189245 LICENSED THROUGHOUT THE WESTERN UNITED STATES AZ ROC 293181 ,, - . CRITICAL STRUCTURES -- BALANCING ENVIRONMENT AND DESIGN Structural Calculation Package For Design of Storefront Mullions and Anchorage For Jaguar Land Rover 10125 SW Washington Sq Rd Portland, OR Job #: 18-1037 Date: April 4, 2019 �(R�D P R O,cEs Q 4k- 85721 r DIGITAL SIGNATURE OREGON o ‹,,, BER ,�, c STOVN RENEWS:6-30-2020 Prepared for Window Tech 1852 Lomita Boulevard, Suite 210 • Lomita,California 90717 Phone:310-530-3050 • Fax: 310-530-0184 •Web:www.critical-structures.com CRITICALProjectJaguar Land Rover Portland Date 11/29/18 artI�t(1$1i:x Project No. 18-1037 Sheet No. 1 SDF '' STRUCTURES Subject Table of Contents and Introduction By +r. BALANCING ENVIRONMENT AND DESIGN Table of Contents Subject Sheet Cover Cover Table of Contents 1 Introduction(Scope) 1 Wind Design Forces 2 Seismic Design Forces 3 Mullions 4 Anchorage 10 Fallout Calculations 11 Glazing Calculations 12 Mullion Properties 13 Hilti Profis Anchor Selector Output 15 Codes 2014 Oregon Structural Specialty Code(OSSC 2014) Introduction The Scope for this structural calculation submittal is: 1. Adequacy of the mullions and their anchorage. Description of system The system consists of 1"glazing spanning to aluminum mullions by Kawneer, which span to building structure. © Critical Structures, Inc 0., '!�� CRITICAL Project Jaguar Land Rover Portland Date 11/29/2018 �� -. . Project No. 15-1037 Sheet No. 2 +" ' STRUCTURES Subject Wind Design Forces By SDFF BALANCING ENVIRONMENT AND DESIGN Wind Design Force Part 1, Chp. 30 Components and Cladding Forces (ASCE 7-10 Table 30.4-1) p= 4h[(GC0-(GC 1)j (ASCE 7-10 Eqn. 30.4-1) Height Above Ground Level z = 30 ft Risk Category= II (Str Gen Notes) Ultimate Wind Speed V= 120 mph (Str Gen Notes) Wind Directionality Factor Kd= 0.85 (ASCE 7-10 26.7,Table 26.6-1) Exposure Category= B (Str Gen Notes) Velocity Pressure Coeff KL= 0.7 (ASCE 7-10 30.3.2,Table 30.3-1) Topographic Factor Kzt= 1 (Str Gen Notes) Internal Pressure Coeff GCpi= 0.18 Enclosed building (ASCE 7-10 26.11.1,Table 26 11-1) Velocity Pressure qh=0.00256KZ}c KdV2= 21.9 psf (ASCE 7-10 Eqn.30.3-1) Roof 0 < 10°? Yes (ASCE 7-10 Fig.30.4-1 Note 5) Glazing and Mullion Design Using ASD Load Combinations '' ghAso=0.6gi, %ASD= 13.2 psf Design Pressure p =cb,[(GCp)-(GCp;)] = (ASCE 7-10 Eqn.30.4-1) GCp for walls per ASCE 7-10 Figure 30.4-1 The following is a list of presures based on supported wind area: For 10 ft2 -19.0 psf or 14.2 psf Zone 5 -15.4 psf or 14.2 psf Zone 4 For 20 ft2 -17.8 psf or 13.6 psf Zone 5 -14.8 psf or 13.6 psf Zone 4 For 50 ft2 -16.0 psf or 12.7 psf Zone 5 -14.2 psf or 12.7 psf Zone 4 For 100 ft2 -14.8 psf or 12.0 psf Zone 5 -13.0 psf or 12.0 psf Zone 4 For 200 ft2 -13.6 psf or 11.6 psf Zone 5 -12.8 psf or 11.6 psf Zone 4 For 500 ft2 -11.8 psf or 10.7 psf Zone 5 -11.8 psf or 10.7 psf Zone 4 Interior Elevations: p= 5 psf Design Pressure p=gh[(GCp)-(GCp;)] = GCp for Overhang loads Fig 30.4-2A For 10 ft2 -39.2 psf or 15.5 psf Zone 3 -24.7 psf or 15.5 psf Zone 2 For 20 ft2 -31.3 psf or 14.9 psf Zone 3 -23.4 psf or 14.9 psf Zone 2 ©Critical Structures, Inc ¢t -. frg tom'IL Project No. 18-1037 Sheet No. 3 STRUCTURES Subject Seismic Design Forces By SDF BALANCING ENVIRONMENT AND DESIGN Weights Glass, 1"glazing 7.5 psf Aluminum, 6063-T5,mullions 0.5 psf TOTAL 8.0 psf Seismic Design Force F, 0.4apSDsWp (1+ 2 (L-P-IP Jp _ 1h (ASCE 7-10 Eqn. 13.3-1) )I Site Class: D Sas= 0.720 Ip= 1.00 (Str Gen Notes) (ASCE 7-10 13.1.3) z/h= (1/1) = 1 (assume worst case,top of mullion connection at roof level) ap= 1.0 (Exterior Nonstructural Wall Elements and Connections) (ASCE 7-10 Table 13.5-1) RI,= 2.5 (ASCE 7-10 Table 13.5-1) f1G= 2.5 (For Seismic Anchorage Check Only) Fp= 0.346 Wp f-Governs Fp max= 1.6SDsIpWp= 1.152 Wp (ASCE 7-10 Eqn 13.3-2) Fp min=0.3SosIpWp= 0.216 Wp (ASCE 7-10 Eqn 13.3-3) Fp ASD =0.7*0.346Wp = 0.7*0.346*8 psf= 1.94 psf < 10.7 psf min.; Wind Design governs for anchorage,Fp= 4.84 psf < 10.7 psf min.; Wind Design governs j ©Critical Structures, Inc � CRITICAL Project Jaguar Land Rover Portland Date _4/4/2019 ",'t:J:; t�j Project No. 18-1037 Sheet No. 4 - f{} STRUCTURES Subject Mullions By SDF =• BALANCII IG ENVIRONMEI4I AND DESIGN Vertical Mullions Determine worst case conditions(Center Mullions) Type El. / Sht No. Mullion Location L,ft trib ft psf wL2 wL4 451VG019 Type SF1/6.01 Center 9.59 7.26 13.75 9184 845294 Type SF15/6.08 Center 7.71 6.21 14.25 5263 312710 451SSG005 Type SF8/6.04 Center 8.13 3.42 14.65 3305 218174 Type SF9/6.05 Center 5.11 7.79 14.41 2936 76801 451TVG012 Type SF11/6.07 Center 2.59 5.38 15.16 548 3689 Determine worst case conditions(Edge Mullions) Type El. /Sht No. Mullion Location L, ft trib, ft of wL` wL4 451TVG001 Type SF1/6.01 Jamb 9.59 2,80 14.67 3780 347908 451VG019 Type SF3/6.02 Jamb 7.78 4.67 14.48 4092 247786 451SSG005 Type SF8/6.04 Jamb 8.13 1.79 15.13 1789 118121 Type SF9/6.05 Jamb 5.11 3.98 14.80 1539 40269 © Critical Structures, Inc . . r3 ,f ,' CRITIC A L ProjectJaguar Land Rover Portland Date 4/4/2019 i�4 aimPro Act No. ��� STRUCTURES j 18-1037 Sheet No. 5 :-' Subject Mullions By SDF 6AV.NCIIif.EN VIP.UI IMCN(AND DESIGN Center Mullions: Type SF1/6.01 (Kawneer Part No.451VG019) : 6063-T6 Aluminum A= 1.2541 in2 wtrb= 7.26 ft (ACAD Massprop) I.= 3.1243 in4 L= 9.59 ft Ycg= 2.344 in E= 10,100 ksi SX,= I,Ix/Yeg= 1.333 in3 Iyy= 0.733 in4 Bending and Shear Stress Check: w= 100 lb/ft= 13.7 psf*wtrib M=wL2/8 = 1148 lb-ft fb=(M*12)/(S1C„*1000)= 10.34 ksi h(in)= 4.50 V=0.5wL= 479 lbs b(in)= 2.00 fs=V/(Aa,*1000)= 1.13 ksi t(in)= 0.09 Check Fb (Aluminum Assn Aluminum Design Manual 2015 ed Chapter F) A=2.3*(LbSc/(Cbsgrt(IyJ)))1/2= 24.89 J= 2,34 in4 (AA§F.4.2.3) Cc=0.41(Bc/Dc)= 78.38 >A (AA§F.4) Fcy= 25.00 ksi (AA Table A.3.3) Bc=Fcy(1+(Fcy/2250)1/2)= 27.64 (AA Table B.4.2) Dc=(Bc/10)*(Bc/E)1/2= 0.14 (AA Table B.4.2) Cc=0.41(Bc/Dc)= 78.38 (AA Table B.4.2) Fb=(Mnp(1-(A/Cc))+(rz2EASxc)/Cc3)/(Sxcflb)= 16.33 ksi (AA§F.4) O,= 1.65 (AA§F.1) Check Fs (Aluminum Assn Aluminum Design Manual 2015 ed Chapter G) b/t= 47.87 Fs„=0.6Ft„/O = 10.91 ksi (AA§G.2) A1 =(Bs-Fs,)/1.25Ds= 38.73 <b/t A2 = Cs/1.25 = 75.65 >b/t (AA§G.2) Bs=FS,,*(1+(Fs.,/800)1/3) = 18.98 CS=0.41(Bs/Ds)= 94.57 (AA Table B.4.2) Ds=(Bs/10)*(BS/E)1/2= 0.08 FsY=0.6*Ft,= 15.00 ksi (AA Table B.3. (AA Table A.3.1) ) Fs=(Bs-1.25Dsb/t)/Ilv= 8.52 ksi with f2 = 1.65 (AA§G.1&G.2) Stress ratios fb/Fb= 0.63 < 1.0 OK fs/Fs= 0.13 < 1.0 OK Interaction (fb/Fb)2+(fs/Fs)2= 0.42 < 1.0 OK (AA Eq H.3.2) Deflection Check: A =0.7*5wL4/384EI.= 0.42 in <L/175 OK (AAMA TIR-A11) ADane= 0.40 in for worse case glass pane ',pane= 111.13 inches 4=H/ 3347 < 175 OK (ASTM E 1300 Section 5.2.4 criteria for glass edge supports) <0.75 OK (IBC 2403.3) ©Critical Structures, Inc CRITICAL Project Jaguar Land Rover Portland Date 4/4/2019 '!N i ¢irrli i�fl, y' Project No. 18-1037 Sheet No. 6 `�' STRUCTURES BALANCING ENVIRONMENT AND DESIGN Mullions By SDF Center Mullions(continued): Type SF8/6.04(Kawneer Part No. 451SSG005) :6063-T6 Aluminum A= 1.4578 in2 wtt,i,= 3.42 ft (ACAD Massprop) Ixx= 1.5274 in4 L= 8.13 ft yca= 1.2664 in , E = 10,100 ksi Su= I,D;/ycg= 1.206 in3 Iyy= 0.7957 ink' Bending and Shear Stress Check: w= 50 lb/ft= 14.7 psf*wtrib M=wL2/8 = 413 lb-ft fb=(M*12)/(S,IX*1000)= 4.11 ksi h(in)= 2.82 V=0.5wL= 203 lbs b(in)= 2.00 fs=V/(Aw*1000)= 0.72 ksi t(in)= 0.10 Check Fb (Aluminum Assn Aluminum Design Manual 2015 ed Chapter F) A=2.3*(LbSc/(Cbsgrt(IyJ)))1/2= 24.64 J= 1.32 in4 (AA§F.4.2.3) Cc=0.41(Bc/Dc)= 78.38 >A (AA§F.4) Fcy= 25.00 ksi (AA Table A.3.3) Bc=Fcy(1+(Fcy/2250)1/2)= 27.64 (AA Table B.4.2) Dc=(Bc/10)*(Bc/E)1/2= 0.14 .. (AA Table B.4.2) Cc=0.41(Bc/Dc)= 78.38 (AA Table B.4.2) Fb =(Mnp(1-(A./Cc))+(n2ExSxc)/Cc3)/(Sxcflb) = 10.73 ksi (AA§F.4) Gb= 1.65 (AA§F.1) Check Fs (Aluminum Assn Aluminum Design Manual 2015 ed Chapter G) b/t= 28.20 Fsu =0.6Fa,/14= 10.91 ksi (AA§G.2) Al =(Bs-Fsy)/1.25Ds= 38.73 >b/t A2 =Cs/1.25 = 75.65 >b/t (AA§G.2) Bs=F„*(1+(4,/800)1'3) = 18.98 Cs=0.41(Bs/Ds)= 94.57 (AA Table B.4.2) Ds =(Bs/10)*(Bs/E)1/2= 0.08 (AA Table B.4.2) Fsy=0.6*Fry= 15.00 ksi (AA Table A.3.1) Fs=Fsy/flv= 9.09 ksi with 0,T= 1.65 (AA§G.1&G.2) Stress ratios fb/Fb= 0.38 < 1.0 OK fs/Fs= 0.08 < 1.0 OK Interaction (fb/Fb)2+(fs/Fs)2= 0.15 < 1.0 OK ( 9 E AA H.3.2) Deflection Check: 0 = 0.7*5wL4/384EI,„= 0.22 in <L/175 OK (AAMATIR-A11) pane= 0.22 in for worse case glass pane Lpme= 96.00 inches 4=H/ 5306 < 175 OK (ASTM E 1300 Section 5.2.4 criteria for glass edge supports) <0.75 OK (IBC 2403.3) ©Critical Structures, Inc 774 CRITICAL Project�; R , Jaguar Land Rover Portland Date 4/4/2019 41 Project No. 18-1037 Sheet No. 7 �! STRUCTURES Subject Mullions By SDF BALANCING ENVIRONMENT AND DE.IGH Center Mullions(continued): Type SF11/6.07(Kawneer Part No.451TVG012) : 6063-T6 Aluminum A= 1.4438 in2 w = 5.38 ft (ACAD Massprop) I,IX = 3.6211 in4 L= 2.59 ft YDg= 2.3256 in E = 10,100 ksi S,„= I,R/yeg= 1.557 in3 In,= 0.7216 in4 Bending and Shear Stress Check: w= 82 lb/ft= 15.2 psf*wtrib M=wL2/8 = 69 lb-ft fb=(M*12)/(S,«*1000)= 0.53 ksi h(in)= 4.50 V=0.5wL = 106 lbs b(in)= 2.00 fs=V/(AW*1000)= 0.25 ksi t(in)= 0.09 Check Fb (Aluminum Assn Aluminum Design Manual 2015 ed Chapter F) Aeq=n(E/Fe)1/2= 34.04 (AA§B.5) Fe=(rr2E)/(1.6b/t)2= 86.02 Al <Aeq<A2 (AA Table B.5.1) A2= Cp= 77.55 (AA§B.5) Ai =(Bp-Fcy)/Dp= 21.63 (AA§B.5) Bp=Fcy(1+(Fcy/1500)1/2) = 28.23 (AA§B.4.2) Dp= (Bp/10)*(Bp/E)1/2 = 0.15 (AA§B.4.2) Cp=0.41(Bp/Dp)= 77.55 (AA§B.4.2) =Mnp/Sx-(Mnp/Sxc-rc2E/Cp2)((Aeq-Al)/(Cp-A1))= 15.12 ksi (AA§B.5.5.5) Gb= 1.65 (AA§F.I) Fey= 25 (AA Table A.3.3) Check F, (Aluminum Assn Aluminum Design Manual 2015 ed Chapter G) b/t= 47.87 Fs„ =0.6Fm/fl = 10.91 ksi (AA§G.2) Al = (Bs-Fn,)/1.25Ds= 38.73 <b/t A2= Cs/1.25 = 75.65 >b/t (AA§G.2) Bs=Fs„*(1+(F,/800)1'3) = 18.98 CS=0.41(Bs/Ds)= 94.57 (AA Table B.4.2) Ds= (Bs/10)*(Bs/E)1/2= 0.08 (AA Table B.4.2) Fsy 0.6*Fh, = 15.00 ksi (AA Table A.3.1) Fs =(Bs-1.25Dsb/t)/fly= 8.52 ksi with f1„= 1.65 (AA§G.1&G.2) Stress ratios fb/Fb= 0.03 < 1.0 OK fs/Fs= 0.03 < 1.0 OK Interaction (fb/Fb)2 +(fs/Fs)2= 0.00 < 1.0 OK (AA Eq H.3.2) Deflection Check: =0.7*5wL4/384EI = 0.002 in <L/175 OK (AAMA TIR-A1 1) Apane= 0.001 in for worse case glass pane Lan„,= 27.13 inches A=H/ 257392 < 175 OK (ASTM E 1300 Section 5.2.4 criteria for glass edge supports) <0.75 OK (IBC 2403.3) ©Critical Structures, Inc CRITICAL Project Jaguar Land Rover Portland Date 4/4/2019 �u 1„ Project No. 18-1037 Sheet No. 8 STRUCTURES Subject Mullions By SDF N SALANGIPIG ENVIY.ONMENI AND DESIGN Edge Mullions: Type SF8/6.04(Kawneer Part No.451SSG005) :6063-T6 Aluminum A= 1.0481 in2 wtrib= 1.79 ft (ACAD Massprop) I,x= 2.9401 in4 L= 8.13 ft y,g= 2.3545 in E= 10,100 ksi Sxx= Ixx/ycg= 1.249 in3 In,= 0.4448 in4 Bending and Shear Stress Check: w = 271b/ft= 15.1 psf*wtrib M=wL2/8 = 224 lb-ft fb=(M*12)/(S,„,*1000)= 2.15 ksi h(in)= 4.50 V=0.5wL = 110 lbs b(in)= 2.00 fs=V/(AW*1000) = 0.31 ksi t(in)= 0.08 Check Fb (Aluminum Assn Aluminum Design Manual 2015 ed Chapter F) Aeq=iit(E/Fe)1/2= 40.00 (AA§B.5) Fe=(1t2E)/(1.6b/t)2= 62.30 Al <Aeq<A2 (AA Table B.5.1) A2=Cp= 77.55 (AA§B.5) Al =(Bp-Fcy)/Dp= 21.63 (AA§B.5) Bp=Fcy(1+(Fcy/1500)1/2)= 28.23 (AA§B.4.2) Dp=(Bp/10)*(Bp/E)1/2= 0.15 (AA§B.4.2) Cp= 0.41(Bp/Dp)= 77.55 (AA§B.4.2) =Mnp/Sx-(Mnp/Sxc-n2E/Cp2)((Aeq-A1)/(Cp-A1))= 13.47 ksi (AA§B.5.5.5) = 1.65 (AA§F.l) Fcy= 25 (AA Table A.3.3) Check Fs (Aluminum Assn Aluminum Design Manual 2015 ed Chapter G) b/t= 56.25 Fs„= 0.6Ft„/O = 10.91 ksi (AA§G.2) A1=(BE-Fs.,)/1.25Ds= 38.73 <b/t A2=Cs/1.25 = 75.65 >b/t (AA§G.2) Bs=FS},*(1+(Fsv/800)l'3)= 18.98 Cs= 0.41(Bs/Ds) = 94.57 (AA Table B.4.2) Ds=(B5/10)*(BS/E)1I'2= 0.08 (AA Table B.4.2) Fsv=0.6*Fty= 15.00 ksi (AA Table A.3.1) Fs=(Bs-1.25Dsb/t)/flv= 8.00 ksi with Ds,= 1.65 (AA§G.1&G.2) Stress ratios fb/Fb= 0.16 < 1.0 OK fs/FS= 0.04 < 1.0 OK Interaction (fb/Fb)2+(fs/Fs)2= 0.03 < 1.0 OK (AA Eq H.3.2) Deflection Check: =0.7*5wL4/384EI,�= 0.06 in <L/175 OK (AAMA TIR-AlI) Apat„= 0.06 in for worse case glass pane Lpane= 97.50 inches A=H/ 18713 < 175 OK (ASTM E 1300 Section 5.2.4 criteria for glass edge supports) <0.75 OK (IBC 2403.3) ©Critical Structures, Inc (PCRITICALProjectJaguar Land Rover Portland Date 4/4/2019 af Pro ect No. 18-1037Sheet No. 9 ,if . , STRUCTURES ' Subject Mullions By SDF BALANCING ENVINONMEM AND DESIGN Horizontal Mullions: Type SF1/6.01 (Kawneer Part No.451079 Horizontal):6063-T6 Aluminum A= 1.52 in2 Wtrib= 1.24 ft (ACAD Massprop) I,a= 1.0798 in4 L= 9.00 ft Ycg= 1.0798 in E= 10,100 ksi S,, = I,x/yc= 1.000 in3 Total area of glass= 11.16 ft2 P =Glass Area*Weight/2= 42 lbs a= 13.5 inches (1/4 point of span,8"minimum) A=Pa(3L2-4a2)/24EI= 0.074 inches <0.125 in max. OK < L/360 max. OK © Critical Structures, Inc f-i=w CRITICAL R I T I C A L Project Jaguar Land Rover Portland Date 3/19/2019 Z014I t i'x t Project No. 18-1037 Sheet No. 10 'Y STRUCTURES Project Subject Anchorage By SDF BALANCING FNVIRONMENI AND DESIGN Anchorage into Concrete: Vmax = 479 lbs Review in Hilti Profis software,Factored load on anchors=479/0.6= 798 lbs Per Anchor Designer Software USE(1)3/8"dia.Hilti Kwik HUS EZ screw anchor with 1.625"embedment,2"min edge distance &5"min spacing(aui at ea side of vertical mullion. installation per ICC ESR-3027 Anchorage into Cold Form Steel V,naa= 479 lbs D = 0.216 in de= 1 in Through aluminum sill w/wall thickness 0.063" into 22 ga steel try(2)anchors per side taluminum= 0.0625 in tsteel= 22 ga tsteel/taluminum= 0.4784 V per anchor=Vmax/4 =119.7 lbs Aluminum: Ft„= 30 ksi Cold Form Steel: Fa= 58 ksi P„s=4.2(tsteGl'*D)i"*Fs = 585 lbs E—Governs Pns=2.7*taluminum*d*Faluminum= 1093.5 lbs (AISI E4.3) Pns=2.7*tsteel*d*Fsteel= 1011.39 lbs S2= 3 Pns/l= 195.1146 Check ICC ESR-1976 Table 3,Valk,in steel= 560 lbs (479/195*4)=0.61 < 1.0, OK USE(2)ITW Buildex Teks 12-14 TEKS/3 Screws at each side of mullion.with 3"min spacing installation per ICC-ES ESR-1976 Anchorage into Top/Bottom of CMU Vma„= 151 lbs Try: 1/2 "Diamater Hilti Kwik HUS EZ Screw Anchor in Fully Grouted CMU with 4-1/2"embed Check ICC-ES ESR-3056 Table 5,Vallow in CMU= 245 lbs (151/245*2) = 0.31 < 1.0, OK USE(1) 1/2 Hilti Kwik HUS EZ Screw Anchor with 4-1/2"embed at each side of mullion Min Spacing: 8".Min Edge Distance 1-3/4", End Distance 12"per ESR-3056 © Critical Structures, Inc �5, ; CRITICAL Project Jaguar Land Rover Portland Date 11/29/2018 t � Project No. 18-1037 Sheet No. 11 STRUCTURES Subject Fallout By SDF yAUNCING ENVIRONMENT AND bF4GN Fallout Calculations Worst case per ASCE 7,Table 12.12-1 Story Drift Ratio= 0.020 Max lite height,h= 9.26 ft Dp=h* Story Drift= 2.22 in a>1.25*Ie*Dp= 1.25*1*2.22 in=2.78 in (ASCE 7 Eqn. 13.5-1) In accordance with ASCE 7 Section 13.5.9.1 Exception 1, if the following is satisfied the drift requirement need not be satisfied: Ddear 1.25Dp —>Dclear> 1.25Dp,Fallout OK (ASCE 7 Eqn. 13.5-2) Dcieaz=2c1(1+(hpc2/bpci)) = 3.01 in hp= 111.13 in (height of rectangular glass panel) by= 62.188 in (width of rectangular glass panel) c1 = 0.3895 in (average clearance between vertical glass edge and frame) c2= 0.625 in (clearance between horizontal glass edge and frame) Max lite height,h= 4.74 ft Dp =h*Story Drift= 1.14 in A> 1.25*Ie*Dp = 1.25*1*1.14 in= 1.42 in (ASCE 7 Eqn. 13.5-1) In accordance with ASCE 7 Section 13.5.9.1 Exception 1, if the following is satisfied the drift requirement need not be satisfied: Ddear z 1.25Dp —.Dclear> 1.25Dp, Fallout OK (ASCE 7 Eqn. 13.5-2) Delea,=2c1(1+(hpc2/bpc1)) = 1.56 in hp= 56.875 in (height of rectangular glass panel) by = 91.438 in (width of rectangular glass panel) ct = 0.3895 in (average clearance between vertical glass edge and frame) C2 = 0.625 in (clearance between horizontal glass edge and frame) © Critical Structures, Inc CRITICAL Project Jaguar Land Rover Portland Date 11/29/2018 `� � ` 1t'l Project No. I$-1037 Sheet No. 12 !' � rj', STRUCTURES Subject Glazing By SDF BALANCING EIYIRONAIENI AND DESIGN Glazing Design: (Assumed to be supported on 2 edges) Based on 2012 IBC Section 2403.3, to be firmly supported,the framing members for each individual pane of glass shall be designed so the deflection of the edge of glass perpendicular to the glass pane shall not exceed 1/175 of the glass edge length or 3/4", whichever is less. Glazing design per ASTM E 1300-07 El referenced by IBC 2012 Chp. 35 Glazing Schedule: IG-X: 1"Insulated Glass(1/4" + 1/2 Air+ 1/4") Elevation Type SF1/6.01 Glazing Type: IG-2 Glass Type Fully Tempered Dimensions= 62.1875"x 111.125" Wind Demand= 16 psf Assuming Equivalent Load Share LSI = 2 Per ASTM 1300,Table 1 GTF= 4 Per ASTM 1300,Figure A1.6(upper chart) NFL1 = 19.86 psf For Short Duration Loading: LR1 =NFL1 *GTFI *LS1 = 158.8 psf > 16 psf OK ©Critical Structures, Inc r sIa CRITICAL 13 t>v�MFt r tR�� n � ‘ThArz.fp STRUCTURES BALANCING ENVIKONMLNI AND DESIGN ACAD MASSPROP FOR MULLIONS 451VG019 Area: 1.2541 Perimeter: 28.5608 Bounding box: X:-0.9115 -- 1.0885 Y: -2.1560 -- 2.3440 Centroid: X: 0.0000 Y:0.0000 Moments of inertia: X:3.1243 Y:0.7330 Product of inertia: XY: -0.0884 Radii of gyration: X: 1.5783 Y: 0.7645 Principal moments and X-Y directions about centroid: I: 3.1275 along[0.9993 -0.0369] J: 0.7298 along[0.0369 0.9993] 451 SSG005 Area: 1.4578 Perimeter: 22.4655 Bounding box: X:-1.0000 -- 1.0000 Y:-1.4456 -- 1.2664 Centroid: X:0.0000 Y:0.0000 Moments of inertia: X: 1.5274 Y:0.7957 Product of inertia: XY:0.0000 Radii of gyration: X: 1.0236 Y: 0.7388 Principal moments and X-Y directions about centroid: I: 1.5274 along[1.0000 0.0000] J:0.7957 along[0.0000 1.0000] 451TVG012 Area: 1.4438 Perimeter: 32.6664 Bounding box: X:-1.0531 -- 0.9469 Y:-2.3256 -- 2.1744 Centroid: X:0.0000 Y:0.0000 Moments of inertia: X:3.6211 Y:0.7216 Product of inertia: XY:-0.0351 Radii of gyration: X: 1.5837 Y:0.7070 Principal moments and X-Y directions about centroid: I: 3.6215 along[0.9999-0.0121] J:0.7212 along[0.0121 0.9999] 1852 Lomita Boulevard,Suite 210,Lomita,CA 90717 310.530.3050 T, c/ A CRITICAL 14 Vimr Ili'' , P, �. STRUCTURES bALANCING ENVIRONMENI AND DESIGN 451TVG001 Area: 1.0481 Perimeter: 25.5667 Bounding box: X:-1.2188 -- 0.7812 Y:-2.1455 -- 2.3545 Centroid: X: 0.0000 Y:0.0000 Moments of inertia: X: 2.9401 Y: 0.4543 Product of inertia: XY:-0.1790 Radii of gyration: X: 1.6748 Y: 0.6584 Principal moments and X-Y directions about centroid: 1:2.9529 along[0.9974-0.0715] J: 0.4415 along[0.0715 0.9974] 451079 Horizontal Area: 1.5200 Perimeter: 25.8101 Bounding box: X:-2.2260 -- 2.2258 Y:-0.9864 -- 1.0761 Centroid: X:0.0000 Y:0.0000 Moments of inertia: X: 1.0798 Y: 3.8840 Product of inertia: XY:0.0000 Radii of gyration: X:0.8429 Y: 1.5985 Principal moments and X-Y directions about centroid: I: 1.0798 along[1.0000 0.0000] J: 3.8840 along [0.0000 1.0000] 1852 Lomita Boulevard,Suite 210, Lomita,CA 90717 310.530.3050 15 mozmir i www.hilti.us Prof is Anchor 2.8.0 Company: Critical Structures,Inc. Page: 1 Specifier: Stephen Fong Project: Address: 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 I Date: 4/4/2019 E-Mail: Specifler's comments: 1 Input data Anchor type and diameter: KWIK HUS-EZ(KH-EZ)3/8(1 5/8) D I Effective embedment depth: h,f=1.110 in.,hnam=1.625 In. Material: Carbon Steel Evaluation Service Report: ESR-3027 Issued I Valid: 12/1/201 7 1 1 271/201 9 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.125 in. Anchor plate: lx x ly x t=4.000 in.x 8.000 in.x 0.125 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,fc'=2,500 psi;h=8.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) no R-The anchor calculation is based en a rigid baseplate assumption. Geometry [in.]&Loading(Ib,in.[b] Z at 5 -- \ tO • X Input data and results must he checked for agreement with the misting conditions end for plausibility) PROFIS Anchor(c)2003-2009 Hdti AG,FL-9494 Schwan Hilt is a registered Trademark of HIM AG,Schwan 16 1.4111..T1 www.hilti.us Profis Anchor 2.8.0 Company: Critical Structures,Inc. Page: 2 Specifier: Stephen Fong Project: Address: 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 I Date: 4/4/2019 E-Mall: 2 Load case/Resulting anchor forces Ay Load case:Design loads 42 Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 399 399 0 2 0 399 399 0 ..x max.concrete compressive strain: -[%,] max.concrete compressive stress: -[psi] resulting tension force in(x y)=(0.000/0.000): 0(lb] resulting compression force in(x/y)=(0.000/0.000): 0[lb] O 1 Anchor forces are calculated based on the assumption of a rigid baseplate. 3 Tension load Load N,,,[lb] Capacity b Nn[lb] Utilization AN=Nest®tin Status Steel Strength` N/A N/A N/A N/A Pullout Strength' N/A N/A N/A N/A Concrete Breakout Strength"" N/A N/A N/A N/A *anchor having the highest loading '"anchor group(anchors in tension) Input data and results must be c heciced for agreement with the cadging conditions and for plausibility! PROFIS Anchor f c)2003-2009 Hild AG,FL-9494 Schwan Hilti is a registered Trademark of HIS AG,Schwan 17 www.hiltl,us Profis Anchor 2.8.0 Company: Critical Structures,Inc. Page: 3 Specifier: Stephen Fong Project: Address: 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 I Date: 4/4/2019 E-Mail: 4 Shear load Load V„e[lb] Capacity 0 V„[Ib] Utilization Dv=Vunt.Vn Status Steel Strength* 399 2,202 19 OK Steel failure(with lever arm)" N/A N/A N/A N/A Pryout Strength** 798 1,392 58 OK Concrete edge failure in direction x+Se 798 967 83 OK s anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength Vss =ESR value refer to ICC-ES ESR-3027 d Velem a V„a ACI 318-08 Eq.(D-2) Variables Ase,v[In.2] f a[psi] 0.09 106,225 Calculations Veg[Ib] 3,670 Results Vse[Ib] O steel 41 Via[Ib] V a[Ib] 3,670 0.600 2,202 399 4.2 Pryout Strength Vcpg =kop L(ANm)W so,N W ed,N W qN W qtN Nb, ACI 318-08 Eq.(D-31) $ VVpg a Vue ACI 318-08 Eq.(D-2) ANe see ACI 318-08,Part D.5.2.1,Fig.RD.5.2.1(b) Awo =9 her ACI 318-08 Eq.(D-6) 1 —T W ec,N = 1 +2 eN 51.0 ACI 318-08 Eq.(D-9) 3 her W ed,N =0.7+0.3(h)51.0 ACI 318-08 Eq.(D-11) W cP.N =MAX(cn,10 )S 1.0 ACI 318-08 Eq.(D-13) Nb =kc A. Ng 45 ACI 318-08 Eq.(D-7) Variables kcp her[in.] ee,,N[in.] ees,N fn.] cs,,m,[in.] 1 1.110 0.000 0.000 2.000 W c.N cpe[in.] ke a. fe[Psi] 1.000 2.630 17 1 2,500 Calculations ANc[ln 2] ANco Iln 21 W ec1.N W eu2,N W ed,N W cp.N Nb obi 22.18 11.09 1.000 1,000 1.000 1.000 994 Results V=pg[Ib] $commis 4) Vwg[Ib] Va[Ib] 1,988 0.700 1,392 798 Input data end results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schoen MI Is a registered Trademark of Hite AG,Schwan 18 www.hllti.us Profis Anchor 2.8.0 Company: Critical Structures,Inc. Page: 4 Specifier: Stephen Fong Project: Address: 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 I Date: 4/4/2019 E-Mail: 4.3 Concrete edge failure In direction x+ A Vc.t =(Avco)W ee v W KV ,/cv W KV W parelk4, Vb ACI 318-08 Eq.(D-22) $ Vag z V„a ACI 318-08 Eq.(D-2) Avc see ACI 318-08,Part 0.6.2.1,Fig.RD.6.2.1(b) Avco =4.5 c:f ACI 318-08 Eq.(D-23) 1 W ec,v = 1 2)51.0 ACI 318-08 Eq.(D-26) 3cat W ay =0.7+0.3(1.5C )s 1.0 ACI 318-08 Eq.(D-28) at _11.ha Wh,v = 2 1.0 ACI 318-08 Eq.(D-29) v a 0.2 Vb = (7(d,) 'g)x c;i ACI 318-08 Eq.(D-24) Variables cat(in.] oat[In.] ecv fin.] W av h.[in.] 2.000 - 0.000 1.000 8.000 I,[in.] X de[in.] fe[psi[ W parellekV 1.110 1.000 0.375 2,500 1.000 Calculations Avo[In 2J Aveo[In 21 W ae,v W ed,v W b y Vb[lb] 33.00 18.00 1.000 1.000 1.000 753 Results Vgpg[lb] $commie di Veag[lb] Vua[lb] 1,381 0.700 967 798 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid Is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The*factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! Fastening meets the design criteria! Input data end results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schaal, Hilt is a registered Trademark of HUti AG,Schram • 19 www.hlti.ua Profis Anchor 2.8.0 Company: Critical Structures,Inc. Page: 5 Specifier: Stephen Fong Project: Address: 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 I Date: 4/4/2019 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:KWIK HUS-EZ(KH-EZ)3/8(1 5/8) Profile:no profile Installation torque:480.001 in.ib Hole diameter in the fixture:cif=0.500 in. Hole diameter in the base material:0.375 in. Plate thickness(input):0.125 In. Hole depth in the base material:1.836 In. Recommended plate thickness:not calculated Minimum thickness of the base material:3.250 in. Drilling method:Hammer drilled Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque wrench • Properly sized drill bit Ay 2.000 2.000 0 02 8 • ►x 0 8 0 O • 2.000 2.000 • I , Coordinates Anchor in. Anchor x y cx c.x c.y c,Y 1 0.000 -2.500 - 2.000 - - 2 0.000 2.500 - 2.000 - - Input data and results must be checked for agreement with the existing conditions and for plsusibilRyl PROFIS Anchor(c)2003-2009 Hilli AG,FL-9494 Schwan HIM Is a registered Trademark of Hill AG,Schoen 20 www.hilti.us Profis Anchor 2.8.0 Company: Critical Structures,Inc. Page: 6 Specifier: Stephen Fong Project: Address: . 1350 Coronado Ave.,Long Beach,CA Sub-Project I Pos.No.: Phone I Fax: 310-530-3050 i Date: 4/4/2019 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product, The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put In by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the HIlt Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data end results must be checked for agremment with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schwan Hilti Is registered Trademark of HIM AG,Schwan